УДК 630*377

А.М. Кочнев

С.-Петербургская государственная лесотехническая академия

Кочнев Александр Михайлович родился в 1958 г., окончил в 1981 г. Ленинградскую лесотехническую академию, доктор технических наук, профессор кафедры технологии лесозаготовительных производств С.-Петербургской государственной лесотехнической академии, член-корреспондент РАЕН, академик МАН ВШ, почетный машиностроитель. Имеет более 110 печатных работ в области исследования технического уровня и эксплуатационной эффективности лесосечных машин. E-mail: kama_npk@mail.ru

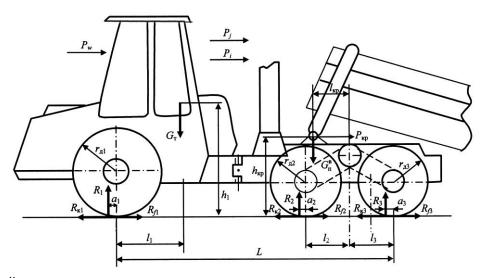
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЦИРКУЛЯЦИИ МОЩНОСТИ В ТРАНСМИССИИ КОЛЕСНОГО ТРЕЛЕВОЧНОГО ТРАКТОРА

Предложены методика и математические модели оценки циркуляции мощности в трансмиссии колесного трелевочного трактора, позволяющие выбирать оптимальные конструктивные параметры.

Ключевые слова: трансмиссия, колесный трелевочный трактор, циркуляция, мощность.

В моторно-трансмиссионных установках мобильных колесных машин с блокированными приводами ведущих мостов движителя возникает «паразитная» мощность, циркулирующая в трансмиссии, вызывающая дополнительный расход топлива, износ шин и увеличение напряженности элементов конструкции. Источниками возбуждения этой мощности в основном являются микронеровности опорной поверхности, конструкция подвески, динамические радиусы шин, зависящие от распределения веса машины по осям. Циркуляцию паразитной мощности в трансмиссии автомобиля с блокированным приводом мостов основательно исследовал акад. АН СССР Е.А. Чудаков [4, 5].

У колесных трелевочных тракторов в отличие от автомобилей трансмиссия и ходовая система имеют конструктивные особенности. Так, связь среднего и заднего ведущих мостов является блокированной, функции подвески (рессоры и амортизаторы) выполняют шины низкого и сверхнизкого давления, а внутримолекулярное трение в материале шины обеспечивает диссипацию энергии. Кроме этого, микропрофиль трелевочного волока и лесовозной дороги создает более интенсивное возбуждающее воздействие на систему трактор — пачка древесины, чем микропрофиль автомобильной дороги [1, 3].


Целью наших исследований является разработка математической модели для оценки циркуляции мощности в трансмиссии трелевочного трактора колесной формулы 6К6, позволяющей на стадии проектирования

оценивать влияние конструктивных параметров трактора и режимов его эксплуатации на величину циркулирующей мощности, а также назначать рациональные технические решения по ее снижению.

Примем следующие обоснованные допущения: трактор совершает установившееся прямолинейное движение по горизонтальной поверхности; нормальная нагрузка на колеса правого и левого бортов распределяется равномерно; давление воздуха в шинах одинаковое; динамическим радиусом качения каждой оси является среднее значение для левого и правого бортов. Основным отличием трелевочного трактора ОАО ОТЗ колесной формулы 6К6 от 4К4 служит дополнительная балансирная тележка привода среднего и заднего мостов. Отсутствие межосевого дифференциала в приводе как переднего, так среднего и заднего мостов вызывает, в зависимости от режима движения трактора, возникновение циркулирующей паразитной мощности между передним и задним мостами, а также внутри самой балансирной тележки между средним и задним мостами.

Схема сил и моментов, действующих на трелевочный трактор колесной формулы 6К6 при движении с пачкой древесины по волоку, представлена на рис. 1.

Распределение нагрузок по ведущим осям – величина переменная, зависящая как от $P_{\text{кр}}$, $G_{\text{п}}^{\text{в}}$, $l_{\text{кр}}$, так и от коэффициента качению $f_{\text{к}}$ и коэффициента сцепления ф. Пренебрегая сопротивлением воздушной среды ($P_{w}=0$) и учитывая первоначальные условия ($P_{i}=0$ и $P_{i}=0$), определяем реакции,

действующие на ведущие мосты трактора:

Рис. 1. Схема сил и моментов, действующих на трелевочный трактор колесной формулы 6К6 при движении с пачкой древесина по волоку: $G_{\rm T}$ – эксплуатационный вес трактора; $P_{\rm K1}$, $P_{\rm K2}$, $P_{\rm K3}$ – касательные силы тяги; $R_{\rm 1}$, $R_{\rm 2}$, $R_{\rm 3}$ – вертикальные реакции; $r_{\rm д1}$, $r_{\rm д2}$, $r_{\rm д3}$ – динамические радиусы качения колес; $C_{\rm n}^{\rm B}$ – часть веса пачки древесины, передаваемая на трактор; $P_{\rm Kp}$ – горизонтальная составляющая

крюковой силы тяги; P_{f1} , P_{f2} , P_{f3} — силы сопротивления качению колес; P_i — сила сопротивления подъему; P_i — сила инерции; P_w — сила лобового сопротивления воздушной среды; h_i , l_i — координаты центра тяжести трактора; $h_{\kappa p}$, $l_{\kappa p}$ — координаты точки приложения крюковой силы тяги; a_1 , a_2 , a_3 — расстояния от ведущих осей до точек приложения вертикальных реакций грунта

$$R_1 + R_2 + R_3 - G_0 - G_0^{\hat{a}} = 0; (1)$$

$$\begin{split} R_{1}(L+a_{1}+l_{3})+R_{2}(a_{2}+l_{2}+l_{3})+R_{3}a_{3}+P_{\kappa\rho}h_{\kappa\rho}-G_{\Pi}^{B}(l_{\kappa\rho}+\partial_{3})-\\ -G_{\tau}(L-l_{1}+l_{3})+(G_{\tau}+G_{\Pi}^{B})f_{\kappa_{1}}+(G_{\tau}+G_{\Pi}^{B})f_{\kappa_{2}}+(G_{\tau}+G_{\Pi}^{B})f_{\kappa_{3}}=0, \end{split} \tag{2}$$

где $f_{\kappa 1}, f_{\kappa 2}, f_{\kappa 3}$ – коэффициенты сопротивления качению колес передней, средней и задней осей трактора.

Распределение суммарной радиальной реакции $R_2 + R_3$ по осям 2 и 3 зависит от соотношения между плечами l_2 и l_3 . Обычно у балансирных тележек эти плечи равны, тогда с известной долей приближения можно принять $R_2 \approx R_3$.

Сделав необходимые преобразования с учетом принятых допущений:

$$\begin{split} (G_{_{\rm T}}+G_{_{\rm II}}^{_{\rm B}})f_{_{\rm K_{1}}} &= R_{1}f_{_{\rm K}}r_{_{\rm J_{1}}}; (G_{_{\rm T}}+G_{_{\rm II}}^{_{\rm B}})f_{_{\rm K_{2}}} = R_{2}f_{_{\rm K}}r_{_{\rm J_{2}}} \text{vi}(G_{_{\rm T}}+G_{_{\rm II}}^{_{\rm B}})f_{_{\rm K_{3}}}; \\ R_{2} &= R_{3}; f_{_{\rm K_{1}}} = f_{_{\rm K_{2}}} = f_{_{\rm K_{3}}} = f_{_{\rm K}}, \end{split}$$

получим

$$R_2 = R_3 = 0.5(G_{\rm T} + G_{\rm II}^{\rm B} - R_1). \tag{3}$$

Исходя из особенностей взаимодействия колесного трелевочного трактора с пачкой древесины и волоком, анализа результатов экспериментальных исследований нагруженности элементов трансмиссии трактора 6К6 [2]

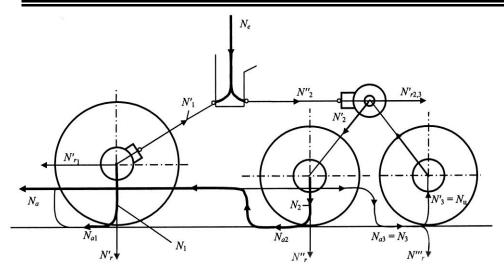


Рис. 2. Схема распределения мощности в трансмиссии колесного трелевочного трактора 6К6: N_e — мощность, подведенная от двигателя; N_1 ', N_2 " — мощности, передаваемые к главным передачам осей 1 и 2, 3; N_1 , N_2 — мощности, подведенные к колесам осей 1 и 2; N'_{r1} , $N'_{r2,3}$ — мощности, теряемые на трение в главных передачах осей 1 и 2–3; N_r ', N_r ", N_r " — мощности, расходуемые на качение, проскальзывание и пробуксовку колес осей 1, 2, 3; N_{a1} , N_{a2} — мощность, отведенная от осей 1, 2 к трактору; $N_{a3} = N_3$ — мощность, подведенная от трактора к оси 3; N_a — мощность, передаваемая от всех осей к трактору; N_3 ' = N_{11} — мощность, циркулирующая в замкнутом контуре балансирной тележки; N_2 ' — мощность, переданная через главную передачу осей 2, 3

и с учетом рекомендаций [4, 5] рассмотрим следующий случай движения колесного трелевочного трактора по волоку: колеса оси 1 пробуксовывают, ведущие; колеса оси 2 имеют чистое качение, ведущие; колеса оси 3 имеют чистое качение, тормозящие.

При этом $r_{\rm n1} > r_{\rm n2} > r_{\rm n3}$. Схема распределения мощности в трансмиссии колесного трелевочного трактора 6К6 OAO OT3 с пачкой древесины, соответствующая рассматриваемому случаю движения, представлена на рис. 2.

Запишем выражения для определения всех перечисленных выше мощностей, приняв $\lambda_1 = \lambda_2 = \lambda_3 = \lambda$:

$$\begin{split} N_{e} &= N_{1}^{'} + N_{2}^{'}; N_{2}^{'} = [\varphi v_{\delta_{1}} + f_{\kappa}(v + v_{\delta_{1}})]R_{1}; \\ N_{2}^{''} &= f_{\kappa}R_{2}v; N_{2} = f_{\kappa}R_{3}v; \\ N_{1}^{'} &= \frac{1}{\eta_{T}} (f_{\kappa} + \varphi)R_{1}(v + v_{\delta_{1}}); N_{1} = (\varphi + f_{\kappa})R_{1}(v + v_{\delta_{1}}); \\ N_{2}^{'} &= \left(\frac{1}{\eta_{T} - 1}\right)N_{1}; N_{a1} = \varphi R_{1}v; N_{\kappa} = P_{\kappa}^{\Sigma} v; \end{split}$$

$$\begin{split} N_{2}^{"} &= 0.5 \nu \Bigg[\Bigg(\frac{1}{\eta_{T}} \Bigg) + \eta_{T}^{'} \Bigg[P_{K}^{\Sigma} - \varphi R_{1} + f_{K} \Big(R_{2} + R_{3} \Big) \Bigg] + \Bigg(\frac{1}{\eta_{T}} - \eta_{T}^{'} \Bigg) \frac{C_{2}}{\lambda} \Bigg]; \\ N_{2}^{'} &= \frac{1}{\eta_{T}} N_{2}; \\ N_{2} &= 0.2 \Bigg[P_{K}^{\Sigma} - \varphi R_{1} + f_{K} \Big(R_{2} + R_{3} \Big) + \frac{C_{2}}{\lambda} \Bigg] \nu; \\ N_{a2} &= 0.5 \Bigg[P_{K}^{\Sigma} - \varphi R_{1} + \frac{C_{2}}{\lambda} \Bigg] \nu; \\ N'_{r2,3} &= \Bigg(\frac{1}{\eta_{T}} - 1 \Bigg) N_{2}; \\ N_{a3} &= N_{3} = 0.5 \Bigg(\frac{C_{2}}{\lambda} - P_{K}^{\Sigma} + \varphi R_{1} \Bigg) \nu. \end{split} \tag{4}$$

И наконец

$$N_{\rm II} = N_3' = 0.5 \left[\frac{C_2}{\lambda} - P_{\kappa}^{\Sigma} + \varphi R_1 - f_{\kappa} (R_2 + R_3) \right] \nu, \tag{5}$$

v-скорость движения трактора; $\nu_{61}=\omega\Big[r_1^0-r_3^0-\lambda\big(P_{\kappa l}-P_{\kappa 3}\big)\Big]-\text{скорость пробуксовывания колес оси 1;}$

η_т – КПД главной передачи;

 $\eta_{_{\rm T}}{'}$ – то же при передаче мощности от колес;

 $C_2 = r_1^0 - r_2^0$ – коэффициент, равный разности радиусов свободного качения колес осей 1 и 2;

> λ – коэффициент тангенциальной эластичности шин;

ω – частота вращения колеса;

 P_{κ}^{Σ} — суммарная сила тяги, $P_{\kappa}^{\Sigma} = P_{\kappa 1} + P_{\kappa 2} + P_{\kappa 3}$;

 r_1^0, r_2^0, r_3^0 — свободные радиусы колес осей 1, 2 и 3.

Анализ уравнения (5) показывает, что паразитная мощность, циркулирующая в замкнутом контуре балансирной тележки, растет с увеличением разности радиусов свободного качения колес осей 1 и 2, поступательной скорости движения трактора и сцепной силы тяги переднего моста, уменьшением тангенциальной эластичности шин, вертикальных реакций на колесах балансирной тележки (нагрузки на крюке), силы сопротивления качению трактора, свободной суммарной касательной силы тяги.

Выводы о влиянии конструктивных параметров и режимов эксплуатации трелевочного трактора колесной формулы 6К6 на характер и значение паразитной мощности, циркулирующей в трансмиссии, подтверждаются

83,2

83,8

№ опы-	Харак- тер	\overline{v} ,	$\overline{M}_{\scriptscriptstyle m T}$	$\overline{n}_{\mathrm{T}}$,	$\overline{N}_{\scriptscriptstyle m T}$	$\overline{M}_{ij}^{\Sigma}$	\overline{n}_{ij}	$\overline{N}_{ij}^{\Sigma}$	$\overline{N}_{\scriptscriptstyle 3.K.B}$	$\overline{N}_{\mathrm{kp}}$	\overline{N}_{κ}	$\overline{N}_{\mathrm{u}}^{\mathrm{бr}}$
та	прове- дения опыта	м/с (км/ ч)	, Н∙м	мин ⁻¹	, кВт	, Н· м	c ⁻¹	, кВт	, кВт	, кВт	, кВ т	, кВт
1	ТКЛ-6- 02 I п → ТКЛ-6- 04 н.п.	1,19 (4,3)	153	1909	29, 8	51	1,3 0	4,0	21,4	8,8	14, 2	7,6
2	ТКЛ-6- 02 II п → ТКЛ-6- 04 н.п.	2,51 (9,1)	294	1832	54, 9	670	2,7	11, 2	53,3	21,1	32,	32,2

789

589

94,

106

Показатели работы МТУ и значения мощности, циркулирующей в балансирной тележке трактора ТКЛ-6-02

результатами испытаний трактора ТКЛ-6-02 (6К6) ОАО ОТЗ, выполненными под руководством автора [2] (см. таблицу и рис. 3). Условия испытаний: лесная дорога плотная песчано-гравийная, передний мост трактора включен, математические ожидания: \overline{V} — поступательной скорости движения тракторов; $\overline{M}_{\scriptscriptstyle \rm T}$ — крутящего момента на валу турбинного колеса гидротрансфор-

матора гидротрансформатора; \overline{n}_{T} — частоты вращения вала турбинного колеса ΓT ; \overline{N}_{T} — мощности на валу турбинного колеса ΓT ; $\overline{M}_{ij}^{\Sigma}$ — суммарного крутящего момента на полуосях переднего моста трактора; \overline{n}_{ij} — частоты вращения передних колес трактора; $\overline{N}_{ij}^{\Sigma}$ — суммарной мощности на полуосях переднего моста; $\overline{N}_{3.\text{K-B}}$ — крутящего момента на заднем карданном валу (привода балансирной тележки); $\overline{N}_{\text{кр}}^{\prime}$ — мощности на крюке

ТКЛ-6-

02 III π

ТКЛ-6-04 н.п. ТКЛ-6-

02 IV

ТКЛ-6-04 н.п.

П.

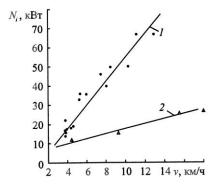
3

4,23

(15,

5,03

(18,


1)

589

938

1574

1109

120.2

130,7

22,

19,

3

4,6

5,4

38.9

44,2

59,

66,

Рис. 3. Зависимость мощности, циркулирующей и балансирной тележке и между ведущими мостами трактора ТКЛ-6-02 от скорости движения, $\overline{P}_{\kappa p}=9.0~\mathrm{kH}$

трактора; \overline{N}_{κ} — мощности на ведущих колесах трактора; $\overline{N}_{\mu}^{\text{бт}}$ — мощности, циркулирующей в балансирной тележке. Кроме того: I_{n} , II_{n} , II_{n} , IV — номер включенной передачи; н. п. — нейтральная передача.

Анализ результатов исследований показывает, что паразитная мощность, циркулирующая в балансирной тележке колесного трелевочного трактора, существенно зависит от скорости его поступательного движения, увеличиваясь, например для трактора ТКЛ-6-02, от 7,6...11,5 кВт на скорости 4,3 км/ч до 84,0...90,0 кВт на скорости 18,0 км/ч при практически близкой к постоянной нагрузке на крюке трактора (8,9...9,4 и 9,1 кН соответственно). Попытки варьирования нагрузки на крюке трактора ТКЛ-6-02 при заданной скорости его движения, близкой к постоянной, показали, что увеличение $P_{\rm кp}$ не оказывает существенного влияния на значение паразитной мощности, циркулирующей в балансирной тележке.

Полученные результаты исследований паразитной мощности, а также ее зависимости от поступательной скорости движения и нагрузки на крюке совпадают с основными теоретическими положениями Е. А. Чудакова [5], а также результатами его экспериментальных исследований применительно к трансмиссиям автомобилей колесной формулы 6К6, оснащенных балансиными тележками [4].

Выводы

1. В трансмиссии трелевочного трактора колесной формулы 6К6 возникает циркулирующая паразитная мощность, зависящая в первую очередь от поступательной скорости движения, нагрузки на крюке и достигающая 65...70 % от номинальной мощности двигателя.

Разработанная математическая модель циркуляции мощности в трансмиссии колесного трелевочного трактора 6К6 дает возможность: оценивать паразитную мощность; выбирать основные параметры трактора на стадии проектирования и принятия к серийному производству, включая массовые и геометрические показатели базовой машины и технологического оборудования, упруго-демпфирующие характеристики шин, параметры трансмиссии, введение дополнительных конструктивных решений; оценивать влияние различных технических решений для трансмиссии и ходовой системы на значение циркулирующей «паразитной» мощности; определять область оптимальных конструктивных решений, дающих возможность ее снижения.

СПИСОК ЛИТЕРАТУРЫ

- $1.\ \it{Жуков},\ \it{A.B.}$ Основы проектирования специальных лесных машин с учетом их колебаний [Текст] / А.В. Жуков, А.И. Кадолко. Минск: Наука и техника, $1978.-264\ c.$
- 2. *Кочнев, А.М.* Рабочие режимы отечественных колесных трелевочных тракторов [Текст] / А.М. Кочнев. СПб.: Изд-во политехн. ун-та, 2008. 520 с.
- 3. *Кочнев, А.М.* Теория движения колесных трелевочных систем [Текст] / А.М. Кочнев. Там же, 2007. 612 с.

- 14
- 4. $\mbox{\it Чудаков, Е.А.}$ Циркуляция мощности в системе бездифференциальной тележки с эластичными колесами [Текст] / Е.А. Чудаков. М.: Изд-во АН СССР, 1947. 216 с.
- 5. Чудаков, E.A. Циркуляция паразитной мощности в механизмах бездифференциального автомобиля [Текст] / E.A. Чудаков. M.: Машгиз, 1950. 80 с.

Поступила 19.11.08

Показатели работы МТУ и значения мощности, циркулирующей в балансирной тележке трактора ТКЛ-6-02

№ опыта	Характер прове- дения опыта	\overline{v} , M/C	$\overline{M}_{\scriptscriptstyle m T}$,	$\overline{n}_{_{ m T}}$,	$\overline{N}_{\scriptscriptstyle \mathrm{T}}$,	$\overline{M}_{ij}^{\Sigma}$,	\overline{n}_{ij} ,	$\overline{N}_{ij}^{\Sigma}$	$\overline{N}_{\scriptscriptstyle 3.\mathrm{K.B}}$	$\overline{N}'_{{}_{\mathrm{K}\!\mathrm{p}}}$	$\overline{N}_{\scriptscriptstyle m K}$	$\overline{N}_{\scriptscriptstyle m I\!I}^{ m f.t}$
Опыта	дения опыта	(км/ч)	Н∙м	МИН	кВт	Н∙м	c^{-1}	кВт				
1	ТКЛ-6-02 І п.	1,19	153	1909	29,8	51	1,30	4,0	21,4	8,8	14,2	7,6
	→ ТКЛ-6-04 н.п.	(4,3)										
2	ТКЛ-6-02 II п.	2,51	294	1832	54,9	670	2,74	11,2	53,3	21,1	32,3	32,2
	→ ТКЛ-6-04 н.п.	(9,1)										
3	ТКЛ-6-02 III п.	4,23	589	1574	94,5	789	4,62	22,3	120,2	38,9	59,3	83,2
	→ ТКЛ-6-04 н.п.	(15,2)										
4	ТКЛ-6-02 IV п.	5,03	938	1109	106,0	589	5,49	19,8	130,7	44,2	66,7	83,8
	→ ТКЛ-6-04 н.п.	(18.1)										

→ 1 КЛ-6-04 н.п. | (18,1) | | | | Примечание. Стрелкой обозначен процесс буксировки.

шений миссии, ласть оптимальных конструкмощности; циркулирующей ходовой системы на значение различных шений; тельных конструктивных рестики шин, параметры трансдемпфирующие ского оборудования, упруговой машины и технологичеметрические показатели базову, включая массовые и геотия к серийному производстдии проектирования и приняпараметры трактора на стаоценивать паразитную мощтора 6К6 дает возможность: колесного трелевочного тракции мощности в трансмиссии матическая модель циркуля-Разработанная ДЛЯ выбирать оценивать введение дополнитехнических определять трансмиссии паразитной характериосновные влияние

Выводы

В трансмиссии трелевочного трактора колесной формулы 6К6 возникает циркулирующая паразитная мощность, зависящая в первую очередь от поступательной скорости движения, на-

нальной мощности двигате-

65...70 % от номи-

грузки на крюке и