## КРАТКИЕ СООБЩЕНИЯ И ОБМЕН ОПЫТОМ

УДК 536.253:66.041

### Э.Н. САБУРОВ, С.В. КАРПОВ, Н.В. СМОЛИНА

Архангельский государственный технический университет







Карпов Сергей Васильевич родился в 1945 г., окончил в 1967 г. Архангельский лесотехнический институт, кандидат технических наук, профессор кафедры теплотехники Архангельского государственного технического университета. Имеет более 100 научных трудов в области исследования теплофизических основ работы циклонных устройств различного технологического назначения.



Смолина Наталья Владимировна родилась в 1969 г., окончила в 1991 г. Архангельский лесотехнический институт, ассистент кафедры теплотехники Архангельского государственного технического университета. Имеет 5 научных трудов в области исследования теплофизических основ работы циклонных устройств различного технологического назначения.

# АЭРОДИНАМИКА ЦИКЛОННОГО УСТРОЙСТВА С ДВУХСТОРОННИМИ НЕСИММЕТРИЧНЫМИ УСЛОВИЯМИ ВВОДА И ВЫВОДА ГАЗОВ

Рассмотрены особенности аэродинамики циклонных устройств с торцевым двухсторонним выводом газов, при несимметричных условиях ввода и вывода потока. Даны рекомендации по их расчету.

The peculiarities of aerodynamics for cyclone devices with end double-side gas discharge under unsymmetrical conditions of flow input and output are analyzed. The recommendations for their calculation are given.

Настоящая статья посвящена исследованиям аэродинамики циклонных устройств с двухсторонним торцевым выводом газов, которые в ряде случаев дают возможность наиболее, рационально организовать технологический процесс: повысить сепарационные свойства потока в пылеуловителях, степень выгорания серы в циклонных печах сульфитного производства и термического обезвреживания отходов и др. [1].

Опыты выполнены на циклонном устройстве (рис.1) с диаметром рабочего объема камеры  $D_{\rm x} = 160$  мм и длиной  $L_{\rm x} = 840$  мм. Подвод воздуха в устройство осуществляли через шлицы, расположенные попарно вблизи торцов рабочего объема с диаметрально противоположных сторон в одной поперечной плоскости, по индивидуальным (на каждую пару шлицев) трубопроводам, снабженным регулировочными заслонками. Все шлицы имели поперечное сечение размером  $24 \times 84$  мм. Воздух выводили через плоские пережимы, соосные с рабочим объемом. Относительный диаметр выходных отверстий  $\overline{d}_{\rm вых} = d_{\rm вых}/D_{\rm x}$  варьировали от 0,2 до 0,8.

Рис. 1. Схема циклонного устройства с двухсторонним торцевым выводом газов: 1 – входные шлицы; 2 – рабочий объем; 3 – выходной съемный торец (пережим) В целях удобства анализа опытных данных и разработки рекомендаций рабочий объем устройства условно был разделен на две равные по длине части. Сечение раздела – среднее сечение, имеющее координату z = 0, где z – продольная координата, совпадающая с осью рабочего объема и направленная к выходному отверстию каждой его половины (рис. 1). Всем характеристикам, относящимся к первой половине камеры (нижней на рис. 1), присвоен индекс 1, а ко второй (верхней) – 2.

Поля скоростей и давлений в рабочем объеме устройства измеряли трехканальным цилиндрическим зондом с диаметром насадка 2,6 мм по общепринятой методике. Сечения замеров определяли координатами  $\overline{z}_1 = z_1/D_{\kappa}$  и  $\overline{z}_2 = z_2/D_{\kappa}$ . При проведении работ замеряли расходы воздуха  $V_1$  и  $V_2$  и его температуры, статические давления на боковой поверхности рабочего объема  $p_{c.\kappa1}$  и  $p_{c.\kappa2}$  и на касательной к ней внутренней поверхности рабочего объема  $p_{c.\kappa1}$  и  $p_{c.\kappa2}$ . Дренажные отверстия для отбора статического давления имели диаметр 0,5 мм, располагались по длине рабочего объема с шагом (0,5 ... 1,0)  $D_{\kappa}$ , а по периметру – с двух диаметрально противоположных сторон. Среднерасходную скорость потока воздуха в шлицах определяли по формулам  $v_{вx1} = V_1/f_{вx1}$ ;  $v_{вx2} = V_2/f_{вx2}$ , где  $f_{вx1}$  и  $f_{вx2}$  – площади поперечного сечения входных щлицев (площади входа потока).

Исследования состояли из трех серий опытов. В первой серии исследовали аэродинамику циклонного устройства с двухсторонними несимметричными условиями вывода газов и симметричными условиями их ввода в рабочий объем. В этих опытах варьировали относительный диаметр выходного отверстия  $\overline{d}_{\text{вых2}}$ . Параметры  $\overline{d}_{\text{вых1}} = 0,4$ ,  $V_1 = V_2$ ,  $\overline{f}_{\text{вх1}} = \overline{f}_{\text{вх2}}$  (или  $V_{\text{вх1}} = V_{\text{вх2}}$ ) поддерживали постоянными. На рис. 2 показаны распределения безразмерных тангенциальной  $\overline{w}_{\phi} = w_{\phi} / V_{\text{вх}}$  ( $w_{\phi}$  – размерная тангенциальная составляющая полной скорости потока) и аксиальной  $\overline{w}_z = w_z / V_{\text{вх}}$  ( $w_z$  – размерная аксиальная составляющая полной скорости потока) компонент полной скорости потока в диаметральном сечении циклонного устройства с двухсторонним выводом газов при различных значениях параметра  $\overline{d}_{\text{вых2}}$  (или  $\overline{d}_{\text{вых2}} = d_{\text{вых2}}/d_{\text{вых1}}$ ). На рис. 2 также представлены масштабы  $\overline{w_{\phi}}, \overline{w_z}$  и  $\overline{z}$ .

Для дополнения рис. 2 в табл. 1 приведены основные аэродинамические характеристики циклонного потока при различных значениях параметра  $\tilde{d}_{\rm вых2}$ . Здесь приняты следующие обозначения:  $\bar{w}_{\phi m} = w_{\phi m} / v_{\rm BX}$  – безразмерная максимальная тангенциальная составляющая скорости;  $\bar{r}_{\phi m} = r_{\phi m}/R_{\rm K}$  – безразмерный радиус, характеризующий положение  $\bar{w}_{\phi m}$ ;  $\bar{w}_{\phi a} = w_{\phi a} / v_{\rm BX}$  – безразмерная тангенциальная составляющая положение  $\bar{w}_{\phi m}$ ;  $\bar{w}_{\phi a} = w_{\phi a} / v_{\rm BX}$  – безразмерная тангенциальная составляющая полной скорости на границе ядра потока;  $\bar{r}_{g} = r_{g}/R_{\rm K}$  – безразмерный радиус ядра потока;  $\bar{w}_{zm} = w_{zm} / v_{\rm BX}$  – безразмерная максимальная аксиальная составляющая



Рис. 2. Распределения безразмерных тангенциальной  $w_{\varphi}$  и осевой  $w_z$  компонент полной скорости в рабочем объеме циклонного устройства ( $\overline{d}_{\text{вых1}} = 0,4$ ) при различных значениях  $\overline{d}_{\text{вых2}}$ : a - 0,0; 6 - 0,2; 6 - 0,4; z - 0,6;  $\partial - 0,8$ 

скорости потока в выходном вихре;  $\overline{r}_{zm} = r_{zm}/R_{\rm k}$  – безразмерный радиус, характеризующий положение  $\overline{w}_{zm}$ ;  $\overline{p}_{\rm C.k} = 2p_{\rm C.k}/(\rho_{\rm BX} v_{\rm BX}^2)$  – безразмерное избыточное статическое давление на боковой поверхности рабочего объема камеры;  $\overline{p}_{\rm C.BX} = 2p_{\rm C.BX}/(\rho_{\rm BX} v_{\rm BX}^2)$  – безразмерное избыточное статическое давление в шлицах;  $\zeta_{\rm BX} = 2\rho_{\rm C.BX}/(\rho_{\rm BX} v_{\rm BX}^2)$  – суммарный коэффициент сопротивления камеры по входным условиям;  $\zeta_{\phi m} = 2\Delta P_{\rm n}/(\rho_{\rm BX} w_{\phi m}^2) = \zeta_{\rm BX}/w_{\phi m}^2$  – коэффициент сопротивления, определяющий аэродинамическое совершенство камеры, где  $\Delta P_{\rm n}$  – перепад полного давления в камере.

Представленные на рис. 2 и в табл. 1 данные позволяют отметить, что варьирование  $\tilde{d}_{\rm вых2}$  оказывает существенное влияние на течение в циклонном устройстве. Так, при изменении  $\tilde{d}_{\rm вых2}$  от 0,5 до 2,0 коэффициент сопротивления  $\zeta_{BX}$  снижается с 3,31 до 1,50 (при симметричном выводе газов, когда  $\tilde{d}_{BbiX2} = 1$ ,  $\zeta_{BX} = 3$ ,12). Уменьшаются тангенциальные скорости, а также статическое давление на боковой поверхности рабочего объема и шлицев. Влияние  $\tilde{d}_{BbiX2}$  распространяется на всю область рабочего объема устройства. Аэродинамические характеристики потока в первой и во второй половинах камеры различаются незначительно.

Общая схема течения в камере также существенно зависит от параметра  $\tilde{d}_{Bbix2}$ . В предельном случае ( $\tilde{d}_{Bbix2} = 0$ ) циклонное устройство представляет собой относительно длинную циклонную камеру с односторонним выходом и двухсторонним околоторцевым вводом газов. В устройстве существует центральный обратный вихрь небольшой мощности. В первой половине камеры имеется достаточно сильный обратный периферийный поток, во второй – прямой периферийный. Оба вихря встречаются в области среднего сечения ( $\bar{z} = 0$ ), в результате чего во второй половине возникает кольцевой обратный вихрь.

Выходной вихрь зарождается у глухого торца устройства. Мощность его значительно возрастает по мере продвижения к выходному отверстию. Во второй половине камеры максимальная осевая скорость в выходном вихре остается практически постоянной вплоть до среднего сечения, в первой половине при его движении к выходу  $\overline{W}_{zm}$  увеличивается примерно в 1,5 раза. Максимум  $\overline{W}_z$  в выходном вихре при этом смещается от оси устройства к кромке выходного отверстия. Переход от предельного случая  $\widetilde{d}_{вых2} = 0$ к  $\widetilde{d}_{вых2} = 0,5$  имеет принципиальное значение. Устройство начинает работать с двухсторонним выводом газов. Осевой обратный ток второй половины камеры сливается с выходным вихрем первой, в результате чего в приосевой зоне устройства образуется мощное осевое течение.

Таблица 1

|                          |                              | ·                  |                      |               |                      |                 |                 |                        |                 |                 |
|--------------------------|------------------------------|--------------------|----------------------|---------------|----------------------|-----------------|-----------------|------------------------|-----------------|-----------------|
| <i>d</i> <sub>вых2</sub> | -<br>W <sub>\(\phi\)</sub> m | $\bar{r}_{\phi m}$ | —<br>₩ <sub>фя</sub> | $\bar{r}_{s}$ | -<br>w <sub>zm</sub> | r <sub>zm</sub> | $\bar{p}_{c.x}$ | _<br>Р <sub>с.вх</sub> | ζ <sub>bx</sub> | ζ <sub>φm</sub> |
| 2,0                      | <u>0,52*</u>                 | <u>0,72*</u>       | <u>0,52</u>          | <u>0,68</u>   | <u>0,02</u>          | <u>0,59</u>     | <u>0,47</u>     | <u>0,61</u>            | <u>1,61</u>     | <u>5,95*</u>    |
|                          | 0,49*                        | 0,69*              | 0,50                 | 0,69          | 0,13                 | 0,70            | 0,39            | 0,50                   | 1,50            | 6,25*           |
| 1,5                      | <u>0,67*</u>                 | <u>0,56*</u>       | <u>0,73</u>          | <u>0,69</u>   | <u>0,05</u>          | <u>0,50</u>     | <u>0,99</u>     | <u>1,15</u>            | <u>2,15</u>     | <u>4,79*</u>    |
|                          | 0,69*                        | 0,55               | 0,68                 | 0,69          | 0,13                 | 0,46            | 0,92            | 1,01                   | 2,01            | 4,22*           |
| 1,0                      | <u>1.00</u>                  | <u>0,40</u>        | <u>0,70</u>          | <u>0,74</u>   | <u>0,18</u>          | <u>0,46</u>     | <u>2,10</u>     | <u>2,26</u>            | <u>3,25</u>     | <u>3,25</u>     |
|                          | 1,01                         | 0,39               | 0,69                 | 0,74          | 0,10                 | 0,47            | 2,02            | 2,10                   | 3,12            | 3,08            |
| 0,5                      | <u>1,05</u>                  | <u>0,34</u>        | 0,80                 | <u>0,73</u>   | <u>0,46</u>          | <u>0,11</u>     | <u>2,24</u>     | <u>2,43</u>            | <u>3,43</u>     | <u>3,11</u>     |
|                          | 1,09                         | 0,33               | 0,78                 | 0,74          | 0,06                 | 0,57            | 2,25            | 2,40                   | 3,31            | 2,84            |
| 0,0                      | <u>1,25</u>                  | 0 <u>,22</u>       | 0 <u>.80</u>         | <u>0,75</u>   | <u>0,24</u>          | 0 <u>,47</u>    | <u>2,52</u>     | 2 <u>,70</u>           | <u>3,82</u>     | <u>2,49</u>     |
|                          | 1,20                         | 0,24               | 0,76                 | 0,76          | 0,16                 | 0,25            | 2,59            | 2,79                   | 3,71            | 2,65            |

Примечания. 1. Здесь и далее, в табл. 2, 3, в числителе приведены данные, относящиеся к первой половине камеры, в знаменателе – ко второй. 2. Знаком «\*» отмечены характеристики среднего сечения рабочего объема. В первой половине имеют место лишь два вихря: выходной и обратный периферийный. Последний, взаимодействуя с периферийным обратным второй половины камеры, образует в ней кольцевой прямой вихрь, в дальнейшем сливающийся с выходным. Такая общая перестройка поля осевых скоростей, определяемая изменением  $\tilde{d}_{вых2}$ , является причиной того, что влияние этого параметра распространяется сразу на весь рабочий объем устройства (при $\tilde{d}_{вых2} > 0$ .за положительное направление потоков в каждой, половине устройства (рис. 2) принято, направление от среднего сечения к выходным торцам). Режим истечения воздуха из выходного отверстия в данном случае носит нестационарный характер. В одних случаях выходная вращающаяся струя распространяется из него под определенным углом к плоскости пережима, в других – растекается по его поверхности. Смена режимов происходит самопроизвольно.

При  $\tilde{d}_{Bbix2} = 0,5$  поле осевых скоростей, как следует из вышеприведенного анализа, несимметрично относительно средней поперечной плоскости рабочего объема устройства в отличие от полей  $\overline{w}_{\phi}$  и  $\overline{p}_{c} = 2p_{c}/(\rho_{Bx} v_{Bx}^{2})$ – безразмерного избыточного статического давления. Значения  $\overline{w}_{\phi m}$ ,  $\zeta_{Bx}$  при переходе  $\tilde{d}_{Bbix2}$  от 0,0 к 0,5 уменьшаются, при этом снижается и аэродинамическая эффективность устройства, оцененная по коэффициенту  $\zeta_{\phi m}$ . Вероятно, это связано с тем, что при двухстороннем выводе газов степень использования энергии и момента количества движения газов, вводимых во вторую половину камеры ниже, чем при одностороннем выводе, и определяется главным образом снижением (формально в 2 раза) относительной суммарной площади входа  $\bar{f}_{Bx} = 4 f_{Bx} (\pi D_{K}^{2})$ . Следует иметь ввиду, что при работе устройства с двухсторонним выводом газов имеет место и уменьшение относительной длины рабочего объема камеры. Причем уменьшение  $\bar{L}_{K}$  должно увеличивать  $\bar{w}_{\phi m}$  и  $\zeta_{Bx}$ , а снижение  $\bar{f}_{Bx}$ , наоборот, их уменьшать, что в конечном счете и определяет полученный в работе результат.

Увеличение  $\tilde{d}_{вых2}$  до 1 сопровождается дальнейшей перестройкой поля осевых скоростей и уменьшением  $\bar{w}_{\phi m}$  и  $\zeta_{вx}$ . При  $\tilde{d}_{вых2} = 1$  картина распределений  $\bar{w}_z$ , как и  $\bar{w}_{\phi}$ ,  $\bar{p}_c$ , становится практически симметричной относительно среднего сечения рабочего объема устройства. Увеличение  $\tilde{d}_{вых2} > 1$  приводит к тому, что осевой обратный ток первой половины камеры сливается с выходным вихрем, занимающим всю центральную часть рабочего объема устройства и выходящим наружу через большее выходное отверстие второй половины. При  $\tilde{d}_{вых2} = 1,5$  маломощный выходной вихрь первой половины камеры соединяется с кольцевым вихрем, образующимся в результате взаимодействия в центральной зоне рабочего объема перифе-

рийных обратных вихрей обеих половин. При  $\tilde{d}_{Bbix2} = 2$  через выходное отверстие первой половины камеры выходит вообще сравнительно небольшая часть вводимых в устройство газов. Практически все они устремляются к большему выходному отверстию второй половины ( $\tilde{d}_{Bbix2} = 0,8$ ). Увеличение  $\tilde{d}_{Bbix2}$  от 1 до 2 сопровождается и значительной перестройкой поля тангенциальной скорости. При  $\tilde{d}_{Bbix2} > 1$  максимум  $\overline{w}_{\phi}$  в ядре потока наблюдается лишь в средней части рабочего объема устройства. Вблизи выходных отверстий профиль  $\overline{w}_{\phi}$  имеет характерный спад от стенки рабочего объема. Чем больше  $\overline{d}_{Bbix2}$ , тем эти изменения существенней, а общий уровень  $\overline{w}_{\phi}$  ниже.

Значения  $\overline{w}_{\varphi_m}$  и  $\zeta_{BX}$  для циклонной камеры с двухсторонним выводом газов при различных  $\overline{d}_{BLIX1}$  и  $\overline{d}_{BLIX2}$ ,  $\overline{f}_{BX1} = \overline{f}_{BX2}$ ,  $V_1 = V_2$ , можно определять по следующим уравнениям:

при  $0 < \widetilde{d}_{\text{вых2}} \le 1$ 

$$\overline{w}_{\varphi_m}^{\mathsf{H}} = \overline{w}_{\varphi_m}^{\mathsf{c}} (1,22-0,22 \ \widetilde{d}_{\mathsf{B}\mathsf{b}\mathsf{I}\mathsf{X}2}); \tag{1}$$

$$\zeta_{\rm BX}^{\rm H} = \zeta_{\rm BX}^{\rm c} (1, 17 - 0, 17 \ \widetilde{d}_{\rm Bbix2}); \tag{2}$$

при l $\leq \widetilde{d}_{\scriptscriptstyle \rm Bbix2} \leq 2$ 

$$\overline{W}_{\varphi_m}^{\mathsf{H}} = \overline{W}_{\varphi_m}^{\mathsf{c}} (1,50-0;50 \ \widetilde{d}_{\mathsf{Bbix}2}); \tag{3}$$

$$\zeta_{\rm BX}^{\rm H} = \zeta_{\rm BX}^{\rm c} (1,54-0,54 \ \widetilde{d}_{\rm BbIX2}). \tag{4}$$

Здесь  $\overline{w}_{\phi_m}^{\ \mu}$  и  $\zeta_{Bx}^{\ \mu}$ ,  $\overline{w}_{\phi_m}^{\ c}$  и  $\zeta_{Bx}^{\ c}$  – характеристики устройства с двухсторонним соответственно несимметричным и симметричным выводом газов.

Рекомендации по расчету  $\zeta_{BX}^{c}$  и  $\overline{w}_{\phi_m}^{c}$  приведены в работе [1]. Необходимо отметить, что при расчете для обеих геометрических половин камеры в качестве  $\overline{w}_{\phi_m}^{c}$  и  $\zeta_{BX}^{c}$  в формулах (1) – (4) принимаются их значения, соответствующие большим  $\overline{d}_{BbIX}$ . Так, при  $\widetilde{d}_{BbIX2} = 1,5$  следует принять  $\overline{w}_{\phi_m}^{c}$ и  $\zeta_{BX}^{c}$ , соответствующие  $\overline{d}_{BbIX2} = 0,6$ , а при  $\widetilde{d}_{BbIX2} = 0,5$  – соответствующие  $\overline{d}_{BbIX1} = 0,4$ . Погрешность расчетов по формулам (1) – (4) не превышает ± 4 %.

Во второй серии экспериментов исследовали аэродинамику циклонного устройства с двухсторонними симметричными условиями торцевого вывода газов и несимметричными условиями их ввода в рабочий объем. Несимметрию ввода потока в устройство создавали за счет изменения относительной площади входа  $\bar{f}_{\text{вх1}}$ . При этом  $\bar{f}_{\text{вх2}}$ ,  $\bar{d}_{\text{вых1}} = \bar{d}_{\text{вых2}}$ ,  $V_1 = V_2$  оставались величинами постоянными.

При  $\bar{f}_{BX1} \neq \bar{f}_{BX2}$  и  $\tilde{f}_{BX1} = \bar{f}_{BX1} / \bar{f}_{BX2} \neq 1$  нарушается симметрия распределения аксиальных и тангенциальных компонент скоростей (рис. 3) и давлений потока относительно среднего поперечного сечения устройства. При  $\tilde{f}_{BX1} = 0.5$  и  $\bar{f}_{BX1} = 0.02$ ,  $\bar{f}_{BX2} = 0.04$  во второй половине рабочего объема устройства формируется выходной вихрь, мощность которого возрастает по мере продвижения к выходном отверстию первой половины. В выходных отверстиях наблюдаются осевые обратные токи, проникающие в камеру почти до среднего сечения,



Рис. 3. Распределения безразмерных тангенциальной и осевой компонент полной скорости в рабочем объеме циклонного устройства ( $\bar{f}_{BX2} = 0,04$ ) при различных значениях  $\bar{f}_{BX1}$ : a - 0,08;  $\delta - 0,06$ ; e - 0,04; e - 0,02;  $\partial - 0,00$ 

Таблица 2

| $\widetilde{f}_{\rm bx1}$ | W <sub>qm</sub> | $\bar{r}_{\phi m}$ | —<br>W <sub>фЯ</sub> | $\bar{r}_{s}$ | -<br>W <sub>zm</sub> | $\bar{r}_{zm}$ | $\overline{p}_{c.\kappa}$ | p <sub>с.вх</sub> | ζ <sub>вx</sub> | ζφm          |
|---------------------------|-----------------|--------------------|----------------------|---------------|----------------------|----------------|---------------------------|-------------------|-----------------|--------------|
| 2,0                       | <u>1,44</u>     | <u>0,34</u>        | <u>0,90</u>          | <u>0,81</u>   | <u>0,08</u>          | <u>0,46</u>    | <u>3,58</u>               | <u>3,76</u>       | <u>4,38</u>     | <u>2,11</u>  |
|                           | 1,28            | 0,26               | 1,02                 | 0,65          | 0,33                 | 0,45           | 3,53                      | 3,65              | 5,90            | 3,57         |
| 1,5                       | <u>1,17</u>     | <u>0,34</u>        | <u>0,79</u>          | <u>0,76</u>   | <u>0,17</u>          | 0 <u>,46</u>   | <u>2,67</u>               | <u>2,78</u>       | <u>3,52</u>     | <u>2,56</u>  |
|                           | 1,16            | 0,30               | 0,92                 | 0,68          | 0,22                 | 0,45           | 2,86                      | 2,90              | 4,59            | 3,41         |
| 1,0                       | 1,00            | <u>0,40</u>        | <u>0,70</u>          | <u>0,74</u>   | <u>0,18</u>          | <u>0,46</u>    | <u>2,10</u>               | <u>2,26</u>       | <u>3,25</u>     | 3 <u>,25</u> |
|                           | 1,01            | 0,39               | 0,69                 | 0,74          | 0,10                 | 0,47           | 2,02                      | 2,10              | 3,12            | 3,08         |
| 0,5                       | <u>0,74</u>     | <u>0,40</u>        | <u>0,65</u>          | <u>0,69</u>   | <u>0,08</u>          | <u>0,46</u>    | <u>1,44</u>               | <u>1,66</u>       | <u>4,06</u>     | <u>7,41</u>  |
|                           | 0,69            | 0,39               | 0,50                 | 0,78          | 0,07                 | 0,51           | 1,00                      | 1,03              | 1,45            | 3,04         |
| 0,0                       | <u>0,53</u>     | <u>0,52</u>        | <u>0,42</u>          | <u>0,64</u>   | <u>0,10</u>          | <u>0,40</u>    | <u>0,89</u>               | <u>1,01</u>       | <u>1,98</u>     | <u>7,06</u>  |
|                           | 0,53            | 0,39               | 0,52                 | 0,59          | 0,06                 | 0,45           | 0,89                      | 1,01              | 1,99            | 7,12         |

Уменьшение  $\overline{f}_{Bbix1}$  до 0 приводит к общему снижению уровня вращательных скоростей в рабочем объеме. При этом скорость  $v_{Bx1}$  обратно пропорционально возрастает, что заметно по распределения  $\overline{W}_{\varphi}$  в периферийной зоне течения. При увеличении  $\widetilde{f}_{Bx1}>1$  также наблюдается перестройка поля осевых скоростей. Симметрия распределения  $\overline{W}_z$  относительно среднего поперечного сечения рабочего объема нарушается тем в большей степени, чем выше  $\widetilde{f}_{Bx1}$ . В первой половине начинает формироваться периферийный прямой вихрь, являющийся продолжением периферийного обратного вихря второй части камеры. Одновременно наблюдается и формироваться в первой половине камеры.

Процесс перестройки поля аксиальных скоростей определяет и общие изменения аэродинамических характеристик (рис. 3 и табл. 2). В качестве масштабной в табл. 2 и на рис. 3 принята условная средняя скорость потока в шлицах ( $v_{cp} = 0,5$  ( $v_{вx1} + v_{вx2}$ )). При анализе данных следует иметь ввиду, что изменение  $f_{вx1}$  по условиям проведения опытов обратно пропорционально изменяет  $v_{вx1}$ , а следовательно, и масштабную величину  $v_{cp}$ .

Размерные значения  $w_{\phi m}$  и  $p_{c.\kappa}$  по длине рабочего объема устройства практически одинаковы.

Значения  $\overline{w}_{\varphi m}$  и  $\zeta_{BX}$  циклонной камеры с двухсторонним выводом газов при различных  $\overline{f}_{BX1}$ ,  $\overline{f}_{BX2}$ ,  $\overline{d}_{BbiX1} = \overline{d}_{BbiX2}$ ,  $V_1 = V_2$  можно определить по следующим уравнениям:

при  $0 < \widetilde{f}_{\text{вх 1}} \le 1$ 

$$\overline{w}_{\varphi_{m}}^{H} = \overline{w}_{\varphi_{m}}^{c} (0,53+0,47\,\widetilde{f}_{BX1});$$
(5)

при  $1 \le \widetilde{f}_{\text{вх 1}} \le 2$ 

$$\overline{w}_{\varphi_m}^{\mathbf{H}} = \overline{w}_{\varphi_m}^{\mathbf{c}} (0.69 + 0.31 \, \widetilde{f}_{\mathsf{BX1}}); \tag{6}$$

при 0,5  $\leq \widetilde{f}_{\text{вх 1}} \leq 2$ 

$$\zeta_{\text{BX1}}^{\text{H}} = \zeta_{\text{BX1}}^{\text{c}} (0,4 \ \widetilde{f}_{\text{BX1}}^{-1,26} + 0,6 \ \widetilde{f}_{\text{BX1}});$$
(7)

$$\zeta_{\text{BX1}}^{H} = \zeta_{\text{BX1}}^{c} (0.95 \ f_{\text{BX1}} + 0.05).$$
(8)

В третьей серии опытов рассмотрена аэродинамика циклонного устройства с двухсторонними симметричными геометрическими условиями вывода и ввода газов, но с различными входными скоростями или расходами газов в первой и второй его половинах. При этом в первой половине входная скорость потока выдерживалась примерно постоянной, во второй – изменялась. Уменьшение  $\tilde{v}_{\rm BX2} = v_{\rm BX2}/v_{\rm BX1}$  приводит к общему снижению уровня тангенциальных и аксиальных скоростей (рис. 4).



Рис. 4. Распределения безразмерных тангенциальной и осевой компонент полной скорости в рабочем объеме циклонного устройства при различных значениях  $V_{вк2}$  и  $V_{вк1}$ : a - 35,1 м/с; 35,0 м/с; 6 - 26,1; 35,8; e - 17,2; 35,1; e - 12,0; 35,6;  $\partial - 0,0$  м/с; 35,8 м/с

Таблица 3

| V <sub>BX2</sub> | _<br>₩ <sub>φm</sub> | $\bar{r}_{\varphi m}$ | —<br>Ж <sub>ФЯ</sub> | $\bar{r}_{s}$ | <br>W <sub>zm</sub> | -<br>r <sub>zm</sub> | р <sub>с.к</sub> | $\bar{p}_{c.bx}$ | $\zeta_{\text{bx}}$ | ζφm         |
|------------------|----------------------|-----------------------|----------------------|---------------|---------------------|----------------------|------------------|------------------|---------------------|-------------|
| 1,00             | <u>1,00</u>          | <u>0,40</u>           | <u>0,70</u>          | <u>0,74</u>   | <u>0,18</u>         | <u>0,46</u>          | <u>2,10</u>      | <u>2,26</u>      | <u>3,25</u>         | <u>3,25</u> |
|                  | 1,01                 | 0,39                  | 0,69                 | 0,74          | 0,10                | 0,47                 | 2,02             | 2,10             | 3,12                | 3,08        |
| 0,73             | <u>0,89</u>          | <u>0,34</u>           | <u>0,74</u>          | <u>0,71</u>   | <u>0,15</u>         | <u>0.46</u>          | <u>1,77</u>      | <u>1,64</u>      | <u>3,37</u>         | <u>4,25</u> |
|                  | 0,90                 | 0,39                  | 0,69                 | 0,74          | 0,11                | 0,45                 | 1,71             | 1,66             | 2,43                | 3,00        |
| 0,49             | <u>0,89</u>          | 0 <u>,28</u>          | <u>0,81</u>          | <u>0,65</u>   | <u>0,18</u>         | <u>0,40</u>          | <u>2,11</u>      | <u>2,36</u>      | <u>4,29</u>         | <u>5,42</u> |
|                  | 0,97                 | 0,39                  | 0,62                 | 0,83          | 0,03                | 0,26                 | 1,76             | 1,69             | 2,15                | 2,28        |
| 0,34             | <u>0,88</u>          | 0,46                  | <u>0,86</u>          | <u>0,60</u>   | <u>0,18</u>         | 0 <u>,40</u>         | <u>2,32</u>      | <u>2,54</u>      | <u>4,90</u>         | <u>6,33</u> |
|                  | 0,96                 | 0,39                  | 0,65                 | 0,78          | 0,01                | 0,20                 | 1,78             | 1,65             | 1,89                | 2,05        |
| 0,00             | <u>0,49</u>          | 0 <u>,46</u>          | <u>0,53</u>          | <u>0,56</u>   | <u>0,07</u>         | 0,46                 | <u>0,79</u>      | <u>0,88</u>      | <u>1,83</u>         | <u>7,58</u> |
|                  | 0,58                 | 0,45                  | 0,41                 | 0,64          | 0,01                | 0,20                 | 0,79             | 0,88             | 1,87                | 5,63        |

Наиболее заметная перестройка осевых скоростей наблюдается во второй половине устройства. Связана она, вероятно, с понижением мощности периферийного обратного вихря, последующей его ликвидацией и заменой на периферийный прямой вихрь. Мощность выходного вихря при снижении  $\tilde{v}_{\text{вх2}}$  уменьшается. Образуется кольцевой обратный вихрь, который, пройдя через вторую половину камеры, сливается с выходным вихрем первой. При  $\tilde{v}_{\text{вх2}} = 0$  циклонное устройство работает по схеме с односторонним вводом газов (ввод газов в первую половину). В ранее рассмотренных опытах односторонний вариант ввода газов в устройство, но в его вторую половину, имел место при  $\bar{f}_{\text{вх1}} = 0$ .

Изменение  $\overline{w}_{\phi m}$  и  $\overline{p}_{c.\kappa}$  вдоль рабочего объема устройства сравнительно невелико. Однако при  $\tilde{v}_{вx2} < 0,73$  имеется небольшое повышение уровня  $\overline{w}_{\phi m}$  и снижение  $\overline{p}_{c.\kappa}$  в направлении выходного отверстия второй половины камеры. Основные аэродинамические характеристики потока в рассматриваемом устройстве при различных  $\tilde{v}_{вx2}$  приведены в табл. 3.

Значения  $\overline{w}_{\phi m}$  и  $\zeta_{\text{вх}}$  для циклонных камер с двухсторонним выводом газов при различных  $\nu_{\text{вх1}}$ ,  $\overline{v}_{\text{вх2}}$ ,  $\overline{d}_{\text{вых2}}$ ,  $\overline{f}_{\text{вх1}} = \overline{f}_{\text{вх2}}$  можно рассчитать по следующим формулам: при  $0 < \tilde{v}_{\text{вх2}} \leq 1$ 

$$\overline{w}_{\varphi m l}^{H} = \overline{w}_{\varphi m l}^{c} (2, 1 \, \tilde{v}_{BX2}^{3} - 3, 81 \, \tilde{v}_{BX2}^{2} + 2, 20 \, \tilde{v}_{BX2} + 0, 49);$$
(9)

$$\overline{w}_{\varphi m2}^{\rm H} = \overline{w}_{\varphi m2}^{\rm c} (2.5 \, \tilde{v}_{\rm BX2}^3 - 4.40 \, \tilde{v}_{\rm BX2}^2 + 2.32 \, \tilde{v}_{\rm BX2} + 0.58); \tag{10}$$

при  $0,33 \le \tilde{v}_{BX2} \le 1$ 

$$\zeta_{BX1}^{H} = \zeta_{BX}^{c} (0.83 \, \tilde{\nu}^{-0.57}_{BX2} + 0.17 \, \tilde{\nu}_{BX2}); \tag{11}$$

$$\zeta_{\text{BX2}}^{\text{H}} = \zeta_{\text{BX}}^{\text{c}} (0.4 \tilde{\nu}_{\text{BX2}}^{2.4} + 0.6).$$
(12)

Результаты двух последних серий опытов были обработаны с использованием приведенной площади входа потока в камеру [3]

$$\bar{f}_{\rm BX. ПРИВ} = \frac{4f_{\rm BX. ПРИВ}}{\pi D_{\rm K}^2} = \bar{f}_{\rm BX1} + \bar{v}_{\rm BX2} \bar{f}_{\rm BX2} .$$
(13)

В результате получены следующие расчетные уравнения:

$$\overline{w}_{\varphi m l}^{\rm H} = \overline{w}_{\varphi m l}^{\rm c} \left[ \left( \widetilde{f}_{\rm BX, \Pi P H B} \right)^{-1.5} + 1,50 \ \widetilde{f}_{\rm BX, \Pi P H B} - 1,50 \right]; \tag{14}$$

$$\overline{w}_{\varphi m2}^{H} = \overline{w}_{\varphi m2}^{c} (\widetilde{f}_{BX,\Pi \rho uB})^{1,8}; \qquad (15)$$

$$\zeta_{\text{BX1}}^{\text{H}} = \zeta_{\text{BX1}}^{\text{c}} [(\widetilde{f}_{\text{BX.ПРИВ}})^{-1,7} + 1,85 \ \widetilde{f}_{\text{BX.ПРИВ}} - 1,85];$$
(16)

$$\zeta_{BX2}^{H} = \zeta_{BX2}^{c} [0,04 (\widetilde{f}_{BX.\Pi P \mu B})^{4,5} + 1,36 \widetilde{f}_{BX.\Pi P \mu B} - 0,40].$$
(17)

Здесь  $f_{\text{вх.прив}} = \bar{f}_{\text{вх.прив}}^{\text{н}} / \bar{f}_{\text{вх.прив}}^{\text{с}}$  – отношение приведенных площадей входа потока для устройств с двухсторонними несимметричным и симметричным вводами газов.

Таким образом, параметры  $\tilde{d}_{Bbix}$ ,  $\tilde{f}_{Bx}$  и  $\tilde{v}_{Bx}$  позволяют активно воздействовать на общую схему осевых движений и структуру потока в циклонных устройствах с двухсторонним выводом газов. С технической точки зрения, вероятно, наибольший интерес представляет использование для этих целей  $\tilde{f}_{Bx}$  и  $\tilde{v}_{Bx}$ .

Следует обратить внимание на то, что установленные в работе особенности аэродинамики циклонных устройств с двухсторонним выводом газов относятся к случаю ввода газов, смещенному к выходному торцу рабочего объема в обеих геометрических половинах устройства. (Такой ввод потока рекомендован [2] для повышения кратности внутренней рециркуляции газов.) Если по технологическим требованиям применена другая схема ввода, то для анализа аэродинамики циклонного устройства с двухсторонним выводом газов в первом приближении можно использовать имеющиеся разработки для циклонных камер с их односторонним выводом [2].

### Выводы

1. Результаты выполненных опытов позволили установить общую схему механизма массообмена в рабочем объеме циклонных устройств с двухсторонними несимметричными условиями ввода и торцевого вывода потока.

2. Относительные площади входа и выхода газов являются геометрическими параметрами, оказывающими наиболее эффективное воздействие на аэродинамику рабочего объема циклонных устройств с двухсторонним торцевым выводом газов.

3. Предложенные в работе обобщающие уравнения для определения относительной максимальной скорости и аэродинамического сопротивления циклонных устройств с двухсторонними несимметричными условия-

ми ввода и вывода газов обеспечивают необходимую точность расчетов и рекомендуются для практического использования.

### СПИСОК ЛИТЕРАТУРЫ

[1]. Сабуров Э.Н., Карпов С.В. Циклонные устройства в деревообрабатывающем и целлюлозно-бумажном производстве / Под ред. Э.Н. Сабурова.-М.: Экология, 1993. - 368 с. [2]. Сабуров Э.Н. Циклонные нагревательные устройства с интенсифицированным конвективным теплообменом / АГТУ.- Архангельск: Сев.-Зап. кн. изд-во, 1995. - 341 с. [3]. Циклонные топки /Л.Л. Калишевский, Б.Д. Кацнельсон, Г.Ф. Кнорре и др.; Под общ. ред. Г.Ф. Кнорре и М.А. Наджарова.-М.; Л.: Госэнергоиздат, 1958. - 216 с.

Поступила 12 февраля 1997 г.