УДК 630*431.1

М.Д. Евдокименко

Институт леса им. В.Н. Сукачева СО РАН (г. Красноярск)

Евдокименко Михаил Данилович родился в 1941 г., окончил в 1963 г. Брянский технологический институт, кандидат сельскохозяйственных наук, старший научный сотрудник лесоведения Института леса им. В.Н. Сукачева СО РАН. Имеет около 100 печатных работ в области лесной таксации, лесоведения и лесоводства. E-mail: dismailova@mail.ru

ГЕОГРАФИЯ И ПРИЧИНЫ ПОЖАРОВ В БАЙКАЛЬСКИХ ЛЕСАХ

Рассмотрена сезонная динамика пожароопасности, приведены пирологические спектры высотно-поясных комплексов растительности, проанализированы географические особенности горимости лесов, антропогенные и природные факторы возникновения пожаров.

Ключевые слова: пожары, высотные пояса, пирологические спектры, горимость лесов, антропогенные факторы, грозы.

Леса бассейна оз. Байкал занимают огромную территорию на юговостоке Сибири, охватывающую полностью либо крупными частями три природных округа: Прибайкалье, Селенгинское среднегорье и Хэнтэй-Чикойское нагорье [8]. Территория региона горная. Основные хребты ориентированы параллельно озеру, т. е. перпендикулярно направлению преобладающих ветров. Предельная удаленность территории от морей и океанов предопределяет крайнюю засушливость климата, которая смягчается лишь в некоторых прибрежных районах за счет местной циркуляции воздушных масс, формирующихся над уникальной байкальской акваторией имеющей, площадь 31,5 тыс. км². Природным своеобразием региона обусловлен выбор цели данной работы — изучение географических особенностей лесных пожаров и причин их возникновения.

В бассейне оз. Байкал выделены следующие высотно-поясные комплексы (ВПК) растительности, % от площади региона: лугово-степной – 16, подтаежно-лесостепной – 25, светлохвойный таежный – 35, кедрово-пихтовый таежный – 2, субальпийско-подгольцовый – 4, тундрово-гольцовый – 9 [6].

По каждому ВПК на протяжении 5 лет проводились исследования сезонной динамики пожароопасности в репрезентативных типах леса по методике Н.П. Курбатского [3]. При этом обеспечивалась надлежащая пожаробезопасность огневых опытов.

Общая продолжительность пожароопасного сезона зависит от длительности бесснежного периода, которая в верхних ВПК (субальпийско-

[©] Евдокименко М.Д., 2013

подгольцовом и тундрово-гольцовом) почти вдвое меньше, чем в лесостепи, по долинам крупных рек. Еще более контрастны различия в запасах снега. Осадки за холодный период года во влажных поясах с темнохвойными насаждениями и в субальпийских лиственничных редколесьях в 2–4 раза обильнее по сравнению с подтаежными и лесостепными территориями.

Примечательная особенность начала пожароопасного сезона на большей части байкальского бассейна, занятой тремя нижними ВПК, заключается в том, что незначительный снежный покров сходит, преимущественно испаряясь в крайне сухой воздушной среде, без существенного увлажнения напочвенных горючих материалов. При скудной годовой норме осадков (250...300 мм) на долю снега приходится всего 5...10 %, поэтому талые воды в преобладающих типах светлохвойных лесов образуются редко. Отсюда — ускоренный ход процесса пожарного созревания степных пространств, лесостепи, а также сосново-лиственничных массивов в таежных ВПК.

Степные пожары в южной части региона возможны уже в середине марта, в экстремальные годы — еще раньше. Почти одновременно горение может распространиться на свободные от снега сосновые насаждения, приуроченные к слабоподнятым инсолируемым местоположениям. К началу апреля от снега обычно освобождается большая часть подтаежно-лесостепного ВПК. В первой половине апреля загорания возможны на всей площади данного комплекса, в последней декаде месяца пожарная опасность регистрируется уже и на большей части светлохвойного таежного ВПК, начиная с разнотравных типов леса. В избыточно увлажненных темнохвойных лесах пожарная опасность наступает намного позже. Так, в кедровом таежном и кедрово-пихтовом ВПК таяние снега растягивается на весь май, в тундрово-гольцовом ВПК процесс разрушения мощного снежного покрова заканчивается в июне. Но в последнем случае вследствие высокой насыщенности влагой пожарное созревание напочвенного покрова идет очень медленно.

В начале пожароопасного сезона для байкальского региона характерен так называемый пожарный максимум, обусловленный специфическим сочетанием малоснежной зимы с продолжительной и глубокой весенней засухой. Количество осадков, выпадающих весной на лугово-степных и подтаежно-лесостепных территориях, оказывается намного меньше испаряемости за тот же период времени. Коэффициент увлажнения в долинах рек Селенга и Баргузин падает в это время до 0,1...0,2. На протяжении мая вероятность дней с влажностью воздуха ниже 30 % составляет 0,60...0,70. В июне коэффициент увлажнения повышается до 0,5...0,8 %. Благоприятная в противопожарном отношении метеообстановка складывается в июле, когда количество атмосферных осадков значительно превышает испаряемость [7].

В отдельные годы, по окончании вегетационного периода в лесных фитоценозах, отмечается осенний пожарный максимум. Последовательность возникновения пожароопасного состояния по ВПК аналогична весенней, однако по длительности и напряженности осенний максимум в 2–3 раза уступает весеннему.

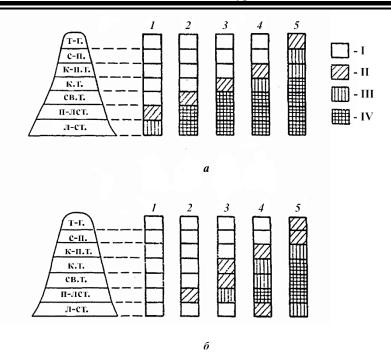


Рис. 1. Весенне-осенние (а) и летние (б) пирологические спектры в лугово-степном (л-ст.) подтаежно-лесостепном (п-лст.), светлохвойном таежном (св. т.), кедровом таежном (к. т.), кедрово-пихтовом таежном (к-п. т), субальпийско-подгольцовом (с-п.) и тундрово-гольцовом (т-г.) ВПК: I-5- классы комплексного метеопоказателя; I-IV классы пожаро-опасности: I- непожароопасное состояние; II- слабая пожароопасность (до 30 % территории данного ВПК); III- средняя пожароопасность (31...70 %); IV- высокая пожароопасность (71...100 %)

Окончание пожароопасного сезона наблюдается по высотным поясам в обратной последовательности, по мере образования снежного покрова. Следовательно, максимальная продолжительность горимости лесов за отдельно взятый сезон отмечается в нижних комплексах, где наряду с ранним началом регистрируется и позднее окончание пожароопасного состояния.

Пирологические спектры ВПК, приведенные на рис. 1, дифференцированы в соответствии с классами пожарной опасности по условиям погоды, которые применяются в лесной охране для прогнозирования общей вероятности загораний на лесной территории отдельно взятой хозяйственной единицы. Полученные спектры схематически иллюстрируют характерную картину пожароопасности лесов по высотным поясам при конкретном состоянии погоды в диапазоне 1–5 классов комплексного метеопоказателя.

Расширение пожароопасного участка спектра по вертикали весной и осенью протекает адекватно изменениям условий увлажнения в соответству-

ющих поясах. Лугово-степной и подтаежно-лесостепной ВПК занимают на спектрах инициальное положение как в момент начала пожароопасного сезона, так и на всем протяжении указанных периодов. Независимо от характера погоды участки с сухим травяным покровом отличаются наибольшей пожароопасностью.

На летних спектрах рассмотренная высотная закономерность нарушается, так как летом на процесс пожарного созревания влияет не только атмосферное увлажнение, но и вегетация напочвенного покрова других ярусов в фитоценозах.

Процесс пожарного созревания лесов по ВПК детерминируется в основном климатическими условиями, замедляется по мере перехода от нижних поясов к верхним в соответствии с нарастанием увлажнения и снижением теплообеспеченности. Помимо высотно-поясной дифференциации лесопирологического фона пожарное созревание отдельных участков в пределах ВПК зависит от типа леса. Состав насаждений, напочвенный покров, экспозиция и крутизна склонов — факторы, определяющие внутрипоясную дифференциацию лесных участков по степени пожароопасности.

На территории наиболее засушливых ВПК, где доминируют сосновые леса, напочвенный комплекс горючих материалов представлен активными легковоспламеняющимися компонентами: отмершей массой травяного покрова, опадом хвои, шишек и мелких ветвей; сухой лесной подстилкой. Тонкие частицы лесного опада и усохшей травы, располагающиеся рыхлым свободно вентилируемым слоем, быстро испаряют влагу. На открытых местах и в изреженных насаждениях на крутых южных склонах достаточно нескольких часов сухой погоды после выпадения несущественных весенних осадков для подсыхания отмершей травы с лесным опадом до воздушно сухого состояния. Причем огонь по сухой траве распространяется в несколько раз быстрее, чем по остальным материалам.

Преобладание на территории лугово-степного и подтаежно-лесостепного ВПК нелесных площадей обусловливает весной и осенью наиболее сложную ситуацию. В течение 3-4 дн. сухой погоды преобладающие типы леса становятся пожароопасными, в то же время высока вероятность их загорания от степных палов, которые способны внедриться в лесные опушки на большом пространстве, особенно при порывах ветра, достигающих весной наибольшей силы. Сильные ветры в Селенгинском среднегорье и Баргузинской котловине наблюдаются весной примерно каждый третий день, на отдельных участках байкальского побережья их скорость может превышать 30 м/с [1, 7].

В светлохвойном таежном поясе преобладают лиственничники. Насаждения сосны, березы и др. пород занимают менее 1/3 площади данного комплекса. Живой напочвенный покров образуют зеленые мхи и кустарнички (брусника, на мерзлотных почвах — багульник болотный). Подлесок: рододендрон даурский, кустарниковые березы и ольховник. Испарение влаги из

3

лесного опада, располагающегося в кустарничковом ярусе или на моховой подушке, замедлено. Кроме того, структура лиственничного опада, представляющего собой плотную войлокообразную массу, препятствует испарению влаги. Поэтому пожарное созревание таежных лиственничников отстает от насаждений подтаежно-лесостепных комплексов.

На открытых участках среди таежных лиственничников луга чередуются и смешиваются с кустарниковыми зарослями, преимущественно ерниковыми. Их ускоренное пожарное созревание весной сочетается с высокой интенсивностью горения. По этой причине ручьи и мелкие реки, к долинам которых они приурочены, не могут служить противопожарными препятствиями до активной вегетации трав.

Полное пожарное созревание светлохвойной тайги в невегетирующем состоянии происходит в течение 1,5–2,0 нед. сухой погоды. Обычно интервал времени без осадков весной бывает дольше, в особенно засушливые годы достигает 2 мес. и более. Поэтому в метеоусловиях, соответствующих многолетней норме, в период весеннего пожарного максимума, отмечается пирологическая монотонность территории, занятой тремя ВПК (лугово-степным, подтаежно-лесостепным и светлохвойным таежным). Критический порог комплексного метеопоказателя составляет около 3000 ед.

Судя по весенне-осенним спектрам, при отмеченной пирологической монотонности способны гореть местности с различными типами растительности, а возникшие лесные пожары превращаются в ландшафтные, сопровождающиеся локальным обезлесением. Такие пожары регистрировались и в центральной экологической зоне региона, в Голоустненском и Кикинском лесхозах (2003 г.). Критическую обстановку отражает пятый спектр. Если соответствующая ситуация длится более 2 нед., возникают лесопирогенные аномалии. Стихийный огонь распространяется по всему лесному поясу, включая субальпийско-подгольцовый ВПК. Методика прогноза подобных ситуаций нами разработана [1]. Долгосрочный прогноз тяжелых событий 2000 и 2003 гг., к сожалению, оправдался [2].

Количественные характеристики потенциальной пожароопасности лесов по ВПК и типам леса приведены в таблице. Как общая, так и непрерывная продолжительность пожароопасного состояния согласуется с высотно-поясной дифференциацией метеоусловий.

Фактическое возникновение пожаров по ВПК и конкретным категориям лесных земель, способных гореть при определенном состоянии погоды, зависит от непосредственного контакта с источником огня. Антропогенные факторы, в отличие от природных, обычно инициируют почти все загорания байкальских лесов. Исторически неблагополучными в пожарном отношении были лесные массивы, расположенные вблизи поселений и подверженные интенсивному хозяйственному освоению.

Потенциальная пожароопасность лесов в бассейне оз. Байкал

	T	T	1		
		Суммарная	Максимальная про-		
		продолжи-	должительность не-		
ВПК	Группы типов леса	тельность по-	преры	вного п	ожаро-
DIII	группы типов леса	жароопасного	опасно	го сост	в кинко
		состояния	засушливые годы, дн		ды, дн.
		за год, дн.	Весна	Лето	Осень
Лугово-степной					
	С. остепненно-				
	разнотравные	100125	50	16	15
	Л. остепненно-				
	разнотравные	75115	41	4	2
Подтаежно-					
лесостепной			_	_	
	С. горнокаменистые и				
	лишайниковые	100145	62	16	13
	С. сухоразнотравные	100140	59	8	9
	С. бруснично-				
	разнотравные	80130	46	18	9
	С. разнотравно-				
	рододендроновые	80120	45	6	9
	Л. разнотравно-				
	брусничные	70105	40	6	8
	Л. рододендро-новые	4570	35	5	7
Светлохвойный		<u>.</u>			1
таежный					
	С. рододендроново-				
	брусничные	80115	25	15	4
	Л. приручьевые разно-				
	травные	6080	39	3	7
	Б. приручьевые разно-				
	травные	5070	35	_	5
	Заросли кустарниковых				
	берез (ерники)	4570	45	_	12
	Л. рододендроново-				
	брусничные	4065	25	8	5
	Б. рододендроново-				
	брусничные	3050	23	5	3
	С. зеленомошные	4065	7	10	5
	Л. ольховниково-				
	рододендроновые	3055	10	7	4
	Л. багульниковые	2050	5	18	5
	Л. зеленомошные	1830	2	12	3
	Л. кустарничково-				
	моховые	1530	2	15	3
	Е. приручьевые	1525	7	_	5
	Ос. разнотравные и ро-				
	додендроновые	1520	5	_	2
	. •	•	•	•	-

			Окон	чание т	аблицы
ВПК	Группы типов леса	Суммарная	Максимальная про-		
		продолжи-	должительность не-		
		тельность по-	прерывного пожаро-		
		жароопасного	опасного состояния в		
		состояния	засушливые годы, дн.		
		за год, дн.	Весна	Лето	Осень
Кедровый таежный			_	_	_
	К. брусничные	1530	2	15	3
	К. и П. бадановые	1015	2	5	_
	К. крупнотравные	810	_	3	_
Кедрово-пихтовый					
таежный					
	К. и П. чернично-				
	зеленомошные	1525	- - -	10	_
	П. крупнотравные	1012	_	2	_
	Ос. крупнотравные	810	_	4	_
Субальпийско-		•	•	•'	•
подгольцовый					
	Заросли кедрового				
	стланика	1020	_	8	5
	К. подгольцовые	1015	_	8	_
	П. субальпийские	510	_	3	_
	Л. подгольцовые	510	_	3	_

 Π римечание. Нижний предел продолжительности пожароопасного состояния соответствует обычной метеообстановке, верхний — экстремальной, наблюдаемой в засушливые годы.

Обезлесение и смены состава лесов в южных и центральных районах бассейна оз. Байкал происходили в результате пожаров, сопутствовавших поселенческим рубкам XVII—XIX вв. и участившихся с появлением Транссибирской ж.д. Так, в Южном Прибайкалье характерная полоса побережных мелколиственных лесов на месте коренной темнохвойной тайги образовалась вследствие «селективного» воздействия пожаров [5].

Проблематичным фактором являются неконтролируемые выжигания травяной ветоши на лесных лугах и пожнивных остатков на полях, примыкающих к опушкам леса. При этом обычно полагают, что проведение традиционных «сельхозпалов» сразу после схода снега — достаточное условие для предотвращения пожаров в лесных насаждениях, где снежный покров сохраняется дольше. В благополучной обстановке (на сырой поверхности почвы) сухие травы удается сжигать беглым огнем, после чего в течение непродолжительного времени могут слегка дымить верхушки кочек и остатки обгоревших кустарников. В иной ситуации сухая дернина, а тем более оторфованные участки, продолжают тлеть днями и неделями до полного выгорания.

Таежные территории, где неосмотрительно проводятся столь рискованные мероприятия, оказываются буквально «заминированными» в пожарном отношении. Поэтому, когда тонкая или фрагментарная снежная пелена едва прикрывает сухой наземный слой лесных горючих материалов, дань традиции оборачивается массовыми пожарами, возникающими от многочисленных и малозаметных очагов беспламенного горения вблизи опушек леса. На долю этого фактора обычно приходится 10...20 % лесных пожаров. В экстремальные сезоны так возникают до 50...70 % крупных пожаров, в том числе ландшафтных.

На карте горимости лесов (рис. 2) резко выделяется Селенгинское среднегорье, где при известной пожароопасности произрастающих там сосняков и лиственничников отмечается наибольшее количество источников огня. Помимо сельхозпалов, в данном природном округе пожары часто возникают по различным причинам, объединяемым лесной охраной в категорию «неосторожное обращение с огнем в лесу».

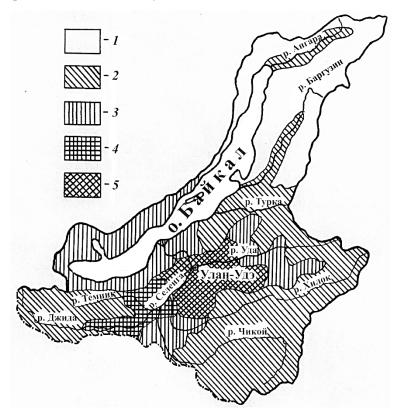


Рис. 2. Схематическая карта фактической горимости байкальских лесов: I — малая горимость, 2 — ниже средней, 3 — средняя, 4 — выше средней, 5 — высокая

Пожары в районах лесозаготовок после внедрения экологичных технологий (1960–70 гг.) были редкими. Причем лесозаготовители оперативно их тушили в собственных сырьевых базах, а также помогали лесной охране при напряженной обстановке в смежных лесах. Пожарная обстановка заметно осложнилась с приходом на смену упраздненным леспромхозам нынешних неспециализированных лесозаготовителей.

По официальным данным, доля лесных пожаров от гроз варьируется в пределах 5...20 %. Такие пожары в основном бывают летом, когда часто выпадают дожди, а также активно вегетируют травы. Число дней с грозой в июле (самый грозоопасный месяц) меньше числа дождливых дней [6]. Вследствие малой продолжительности сухой погоды крупные пожары летом отмечаются редко. Во время весеннего максимума, когда возникают массовые и самые опустошительные пожары в байкальских лесах, гроз не бывает.

Выводы

- 1. Пожароопасность и фактическая горимость байкальских лесов закономерно дифференцируются по высотным поясам, сообразно климатическим условиям и составу растительных комплексов. Вследствие засушливого климата пожароопасный сезон в регионе отличается высокой напряженностью и большой продолжительностью (с марта по октябрь). Наиболее горимы светлохвойные леса, доминирующие в подтаежно-лесостепном и светлохвойном таежном ВПК. Специфической и экстремальной особенностью лесов является их пирологическая монотонность, наблюдаемая на большей части территории в период весеннего пожарного максимума, когда на огромных пространствах не бывает естественных препятствий для распространения огня, кроме широких рек и озер.
- 2. Основные причины пожаров: неконтролируемые выжигания травянистой растительности (сельхозпалы) и небрежное обращение с огнем в лесу. Пожары от молний малочисленны, поскольку грозы в основном бывают в период летнего максимума атмосферных осадков.
- 3. Исходя из потенциально высокого пожарного риска, охрану байкальских лесов следует осуществлять в соответствии с известной концепцией Н.П. Курбатского [4, с. 123] о гибком сочетании всех видов лесопожарной профилактики с высокой оперативностью их обнаружения и ликвидации. Для повышения эффективности профилактики следует оптимизировать регламент контролируемых выжиганий, проводимых вблизи лесных опушек. Обязательным условием должна быть предварительная прокладка защитных минерализованных полос. Огневые работы целесообразно проводить в октябре (по северным районам в конце сентября), по мере установления благоприятной погоды І–ІІ классов пожароопасности. Рекомендуется режим беглого слабого огня по мерзлому грунту, перед выпадением снега. Должны быть подготовлены защитные минполосы и обеспечено надлежащее окарауливание выжигаемых площадей.

СПИСОК ЛИТЕРАТУРЫ

- 1. Евдокименко М.Д. О долгосрочном прогнозировании высокой пожароопасности лесов в Байкальском регионе // Лесн. хоз-во. 2000. № 1. С. 47–50.
- $2.\ \it Eвдокименко\ \it M.Д.$ Природа пожаров в байкальских лесах и совершенствование их противопожарной охраны // Леса бассейна Байкала. Красноярск: Институт леса им. В.Н. Сукачева СО РАН, 2008. С. 159–227.
- 3. *Курбатский Н.П.* Исследование количества и свойств лесных горючих материалов // Вопросы лесной пирологии. Красноярск: Ин-т леса и древесины СО АН СССР, 1970. С. 5–58.
- 4. *Курбатский Н.П.* Некоторые вопросы стратегии, тактики и техники охраны леса от пожаров // Вопросы пирологии. Красноярск: Ин-т леса и древесины СО РАН СССР, 1972. 130 с.
 - Панарин И.И. Леса Прибайкалья. М.: Наука, 1979. 263 с.
- 6. Поликарпов Н.П., Бабинцева Р.М., Чередникова Ю.С. Экологические основы ведения лесного хозяйства в бассейне оз. Байкал // Растительные ресурсы Забайкалья, их охрана и использование. Улан-Удэ, 1979. С. 52–57.
- 7. Справочник по климату СССР. Л.: Гидрометеоиздат, 1966–1969. Вып. 23, ч. I–V.
- 8. Типы местности и природное районирование Бурятской АССР / В.С. Преображенский, Н.В. Фадеева, Л.И. Мухина, Г.М. Томилов. М.: Изд-во АН СССР, 1959. $218\ c.$

Поступила 28.01.11

M.D. Evdokimenko

Sukachev Institute of Forest SB RAS, Krasnoyarsk

Forest Fire Causes and Distribution in the Baikal Region

This study focused on the seasonal fire hazard dynamics. Altitudinal vegetation belt-specific ranges of fire characteristics (fire spectra) were identified. Spatial patterns of forest fire activity, as well as human and natural factors accounting for fire occurrence were analyzed.

Keywords: fire, altitudinal belts, fire spectrum, forest fire activity, human factors, storms.