нова Л. Е. О величине расхода органических веществ на дыхание в различных условиях минерального питания растений // Физиология растений.— 1968.— Т. 15, вып. 2.— С. 272—280.

Поступила 22 июля 1988 г.

УДК 630*181.22:630*232.31

ВЛИЯНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА СОЗРЕВАНИЕ И ПЛОТНОСТЬ ОБОЛОЧЕК СЕМЯН БУНДУКА ДВУДОМНОГО

А. А. КУЛЫГИН

Новочеркасский инженерно-мелиоративный институт

Бундук двудомный, или канадский *Gymnocladus dioicus* (L.) С. Косh — крупное дерево из семейства бобовых. Успешно разводится на Украине, в Закавказье, Северном Кавказе. Древесина твердая, тяжелая, очень крепкая, с ядром розового цвета и красивой текстурой. Используется для изготовления мебели, шпал, столбов и др.

С. С. Пятницкий [9] указывал на возможность использования бундука двудомного в защитных насаждениях на Северном Кавказе. В степных районах Нижнего Дона и Северного Кавказа бундук двудомный оказался вполне зимостойким и засухоустойчивым [2, 8, 10]. Он

считается прекрасной породой для озеленения [1, 8, 10].

В условиях Ростовской области у представителей семейства бобовых — софоры японской и гледичии обыкновенной, в годы с малой теплообеспеченностью семена не успевают созревать. Плотность оболочек семян у названных пород также зависит от погодных условий периода вегетации [7]. Биология бундука двудомного во многом схожа с биологией гледичии обыкновенной. Он поздно начинает вегетацию. Семена созревают в октябре.

Задача наших исследований — изучить влияние метеорологических

условий на созревание и качество семян бундука двудомного.

Объектом наблюдения служили деревья бундука, произрастающие в дендрарии Ростовского мехлесхоза. Почва участка — северо-приазовский чернозем. Бундук посажен здесь в 1962 г. и представлен небольшими группами деревьев. Расстояние между рядами 8...10 м, между деревьями в ряду 2...4 м. Высота деревьев в 1983 г. составляла 12...13 м, диаметр на высоте груди — 18...31 см.

Цветет бундук в конце мая — начале июня. Сначала зацветает нижняя часть кистевидного соцветия, затем цветение постепенно перемещается вверх. Плоды образуются в такой же последовательности,

что предопределяет некоторую разнокачественность семян.

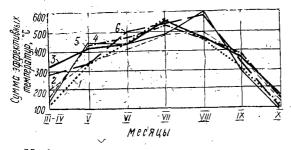
Семена бундука собирали в конце октября — начале ноября, после окончания вегетации (полного опадения листьев). К несозревшим относили семена увеличенных в 1,2—1,4 раза размеров, с мягкой слизистой оболочкой и эндоспермом. Помещенные на 2 ч в 0,05 % й раствор индигокармина, зародыши таких семян окрашивались; при проращивании семена не проявляли признаков жизни. Первые заморозки в условиях Ростова-на-Дону отмечаются в первой-второй декадах октября еще до окончания вегетации бундука. Не исключено, что несозревшие семена побивались морозом. На повреждение не полностью вызревших плодов бундука указывает и Д. В. Воробьев [4]. Массу 1 000 семян определяли в соответствии с ГОСТ 13056.4—67. Водопроницаемость семенных оболочек устанавливали намачиванием 100 семян в пятикратной повторности в воде комнатной температуры (18...20 °C) в течение 24 ч.

При характеристике метеорологических условий использованы данные наблюдений Ростовской гидрометеорологической обсерватории,

Расчет сумм эффективных температур выполнен по общепринятой методике [3].

Характеристика семян бундука двудомного приведена в табл. 1.

				1	аолица 1
Год	Масса 1 000 се- мян, г		и семян, м	Про-	Количество набухших семян, %, после на-мачивания в воде в течение 24 ч
		длина 10 шт.	ширина 10 шт.	цент созрев- ших семян	
1980 1982 1983 1984 1985 1986	2 259,6 1 812,6 1 801,2 1 822,2 2 566,2 2 106,2	17,9 17,8 17,5 20,0 17,9	17,2 16,3 16,4 18,5 17,2	46,7 100,0 100,0 100,0 100,0 100,0	100,0* 93,0 0,0 68,8 100,0 13,7


Таблица 🛚

Период наблюдений включал годы с высокой и низкой теплообеспеченностью и разной продолжительностью солнечного сияния. Характеристика метеорологических условий вегетационных периодов дана в табл. 2.

						. 1	аолица 2
Год	Средняя месячная температура воздуха, °C				Сумма эф- фективных температур	Продолжи- тельность солнечного	
	v	VI	VII	VIII	IX	воздуха за период ве- гетации, °C	сияния с апреля по октябрь, ч
1980 1982 1983 1984 1985 1986	15,6 16,4 18,8 19,2 19,3 16,2	20,2 19,0 20,1 20,8 19,8 22,0	23,6 21,0 23,4 22,8 20,9 22,5	20,2 21,4 20,6 20,1 25,0 24,2	15,5 17,4 17,5 18,0 14,8 16,9	2 394 2 500 2 820 2 610 2 538 2 703	1 483 1 673 1 774 1 717 1 626

Таблица 2

На рисунке представлены суммы эффективных температур в отдельные месяцы вегетационных периодов.

Сумма эффективных температур в разные месяцы: 1-1980 г.; 2-1982 г.; 3-1983 г.; 4-1984 г.; 5-1985 г.; 6-1986 г.

Наблюдения показывают, что созревание семян бундука двудомного и водопроницаемость их кожуры находятся в прямой зависимости от теплообеспеченности периода вегетации и продолжительности солнечного сияния. В год с малой теплообеспеченностью (сумма эффективных температур 2 394°) и малой продолжительностью солнечного сияния (1 483 ч с апреля по октябрь) созревала только часть семян. Они легко набухали в воде и при посеве прорастали. Из рисунка сле-

^{*} Анализировали только созревшие семена.

дует, что в 1980 г. в начале вегетации (апрель, май) и ее конце (сентябрь, октябрь) наблюдалось понижение сумм эффективных температур.

В 1983 г., когда сумма эффективных температур за вегетационный период составила 2 820°, а продолжительность солнечного сияния с апреля по октябрь 1 774 ч, все семена бундука созрели и имели плотные водонепроницаемые оболочки. В этом году начало и конец вегетации характеризовались более высокими значениями сумм эффективных температур (см. рисунок). Свет и тепло являются источниками энергии для растений и влияют на фотосинтез, дыхание, транспирацию и другие физиологические процессы, а это, в свою очередь, определяет процесс формирования семян, их созревание.

В лесоводственной литературе рекомендации по подготовке семян бундука двудомного к посеву противоречивы. В книге «Деревья и кустарники СССР» [6] сказано, что бундук «размножают посевом семян

весною без предварительной стратификации».

По Т. А. Желтиковой [5], семена бундука имеют очень плотную оболочку, препятствующую набуханию. Поэтому перед весенним посевом их подвергают скарификации и последующему ошпариванию кипятком. Свежесобранные семена Т. А. Желтикова рекомендует ошпаривать без скарификации, а при осеннем посеве высевать сухие семена.

Д. В. Воробьев [4] высевал как сухие, так и ошпаренные семена.

Способ подготовки семян бундука двудомного к посеву следует выбирать с учетом водопроницаемости семенной кожуры. Если при намачивании в воде все семена бундука набухают, их не следует ошпаривать; если не набухают, то их необходимо подвергнуть скарификации или ошпариванию. Если часть семян набухает, а другая не набухает, семена необходимо готовить к посеву в два приема: сначала намочить в воде в течение 24 ч, отделить на ситах набухшие (а потому более крупные) семена, а ненабухшие ошпарить.

Результаты исследований позволяют оценить сумму эффективных температур в 2394° и продолжительность солнечного сияния 1483 ч,

как недостаточные для созревания семян бундука двудомного.

Сумма эффективных температур 2 538° и продолжительность солнечного сияния 1 626 ч обеспечивают полное созревание семян и формирование у них водопроницаемой кожуры.

При сумме эффективных температур 2 820° и продолжительности солнечного сияния 1 774 ч все семена бундука двудомного созревают и формируют водонепроницаемую кожуру.

ЛИТЕРАТУРА

[1]. Бойченко Е. П. Итоги интродукции древесных пород и кустарников в Ростовском ботаническом саду // Сб. тр. бот. сада.— Харьков, 1956.— Вып. 2, т. 35. [2]. Бойченко Е. П. Перезимовка древесных и кустарниковых растений в Ростове-на-Дону в 1953/54 г. // Бюл. ГБС.— М.: АН СССР, 1955.— Вып. 22.— С. 20—24. [3]. Венцкевич Г. З. Сельскохозяйственная метеорология.— Л.: Гидрометеоиздат, 1952.— 258 с. [4]. Воробьев Д. В. Каркас и бундук. // Тр. Гос. запов. Веселые Боковеньки.— Киев; Харьков, 1950.— Вып. 1.— С. 75—103. [5]. Выращивание посадочного материала для защитного лесоразведения / Д. П. Ишин, Г. Я. Маттис, Т. А. Желтикова, Ф. А. Павленко.— М.: Сельхозиздат, 1963.— 253 с. [6]. Деревья и кустарники СССР.— М.; Л.: АН СССР, 1958.— Т. 4.— С. 59—61. [7]. Кулыгин А. А. Влияние температурных условий на созревание семян гледичии обыкновенной и софоры японской // Лесоведение.— 1984.— № 1.— С. 73—76. [8]. Плотниковых породы в Азово-Черноморском крае // Тр. НИМИ.— Ростов-на-Дону: Азово-Черноморск. кн. изд-во, 1936.— С. 134—145. [9]. Пятицки С. С. Курс дендрологии.— Харьков: ХГУ, 1960.— 422 с. [10]. Чапурин Ф. К., Захарченко С. А. Итоги интродукции древесных пород в условиях степной зоны Кубани // Науч. тр. Кубанск. опытн. станции ВИР.— Краснодар: Краснодарск. кн. изд-во, 1963.— С. 185—255.

1989

УДК 591.52:595.768

ЖЕСТКОКРЫЛЫЕ НАСЕКОМЫЕ СТВОЛОВОГО ЭНТОМОКОМПЛЕКСА В ЛЕСАХ ЦЕНТРАЛЬНОЙ КАМЧАТКИ

Б. М. МАМАЕВ, Н. П. КРИВОШЕИНА, П. А. ХОМЕНТОВСКИЙ

ВИПКЛХ Госкомлеса СССР ИЭМЭЖ АН СССР Камчатская ЛОС ДальНИИЛХ

Леса Қамчатки — единственной в СССР горной страны, которая (вместе с Курильскими островами) относится к области активного проявления современного вулканизма, в силу особого характера геодинамики и формирования биогеоценотического покрова региона отличаются значительным структурно-функциональным своеобразием, осуществляя на полуострове важную функцию сохранения стабильности биотической среды.

В настоящее время промышленной эксплуатацией охвачены лиственничные и еловые леса, в меньшей степени — бело- и каменноберезовые. Значительная часть массивов кедрового стланика уничтожается при рубке основной породы в смешанных древостоях, при горных разработках, при заготовке дров в безлесных районах.

Между тем энтомофауна этих лесов изучена значительно слабее, чем в других регионах страны. Лишь в отношении ксилофагов и конофагов хвойных пород были выполнены целенаправленные исследования [1-9]. Общая же структура стволовых энтомокомплексов, изучение которых важно как в теоретическом, так и в практиче-

ском отношении, до настоящего времени недостаточно исследована.

Энтомокомплексы, как и весь животный мир Камчатки, отличаются значительной спецификой. В течение всего плейстоцена и до наших дней естественной преградой проникновению многих видов насекомых на полуостров служат в прошлом покрытый льдом или водой, а сейчас заболоченный Камчатский перешеек и расположенная к северу от него обширная тундра — Парапольский дол. Те же виды, которые раньше могли заселить вполне приемлемые для них по климатическим условиям и близкие к восточно-сибирским леса Центральной Камчатки, вымерли во время опустошительного верхнеплейстоценового оледенения. По этим причинам ряд видов ксилобионтов, обычных в материковой части области, на полуострове не встречается.

С другой стороны, завезенные на Камчатку с лесоматериалами опасные стволовые вредители — малый черный еловый усач (Monochamus sutor L.) и блестящегрудый еловый дровосек (Tetropium gracilicorne Gebl.), попав в идеальные условия отсутствия врагов и конкурентов, примерно за последние 25 лет расселились практически по всем хвойным лесам полуострова, зачастую достигают высокой численности и наносят значительный технический вред древесине [9].

В целом энтомофауна Камчатки обеднена. В древесине различных древесных пород до наших исследований было зарегистрировано около 50 видов жесткокрылых из 22 семейств. Около половины этих видов впервые были приведены в работах зарубежных ученых, которые изучали сборы шведской экспедиции, работавшей на Камчатке в 1920— 1922 гг. [10—14]. Позднее во время советской Камчатской комплексной экспедиции АН СССР под руководством А. И. Куренцова 1960 гг.) были изучены в общих чертах фауна, биология, трофические связи, распространение и стациальная приуроченность вредителей лесов полуострова, включая ксилофагов [2-8]. Экология и распространение стволовых вредителей хвойных пород были подробно охарактеризованы П. А. Хоментовским [9]. Обитатели мертвой разлагающейся древесины не изучались.