УДК 630*181.36

РЕГЕНЕРАТИВНАЯ СПОСОБНОСТЬ КОРНЕВЫХ СИСТЕМ СОСНЫ И ДУБА В ЧИСТЫХ И СМЕШАННЫХ НАСАЖДЕНИЯХ

В. К. ТИУНЧИК, В. С. ЛАНТУХ, М. И. КАЛИНИН Львовский лесотехнический институт

Способность корней восстанавливать свои органы после механических повреждений — важная биологическая особенность древесных пород [1—3, 8]. До настоящего времени этот вопрос почти не изучался. Ранее проведенные нами исследования этого аспекта касались сосноводубовых и дубово-сосновых культур 20-летнего возраста [6, 7]. Интересны исследования регенеративной способности корней древесных пород в приспевающих и спелых древостоях, когда деревья стареют и в физиологическом отношении не так активны, как в молодом возрасте.

Это явление мы исследовали на трех пробных площадях, заложенных в чистых и смешанных сосново-дубовых насаждениях 90—100-летнего возраста учебно-производственного лесхоззага ЛЛТИ. Тип лесорастительных условий — C_2 ; почва дерново-подзолистая на флювиогляциальных песках. Таксационная характеристика исследованных насаждений приведена в табл. 1.

Таблица 1 Таксационная характеристика сосново-дубовых насаждений

Ho-		Средине						
мер проб- ной пло- щади	Состав	диа- метр, см	высо- та, м	Воз- раст, лет	Класс бони- тета	Число стволов на 1 га, шт.	Полнота	Запас на 1 га, м ³
1	10C + Д С Д	40,5 27,8	31,7 21,2	100	Ia III	278 247 31	0,68 0,61 0,07	474 463 11
2	5С5Д, ед. Е, Л, Г С Д	33,9 28,4	27,5 26,2	90	I	497 205 250	0,92 0,40 0,46	438 213 207
3	10Д + С Д С	33,0 36,4	26,0 28,1	100	I I	354 345 9	0,89 0,87 0,02	375 363 12

Регенеративную способность корней после их повреждения изучали разработанным нами методом [6, 7]. Данные показали, что исследуемые древесные породы в 90—100-летнем возрасте обладают определенной способностью восстанавливать корни в почвенном пространстве на четвертый год после повреждения.

До постановки эксперимента глубина проникновения корней дуба в чистом дубовом насаждении несколько большая, чем корней сосны в сосновом древостое (табл. 2).

Однако общая масса корней дуба в монолите в пересчете на 1 м² значительно уступала массе корней сосны, составляя 64 %. Совершенно иное соотношение массы тонких корней этих пород. Так, корней диаметром менее 2 мм в монолите было у дуба 576,2 г, у сосны только 155,2 г, или в 3,7 раза меньше. Содержание корней более толстых фракций составляет соответственно 2462,3 и 1596,2 г. Как видим, содержание корней более толстых фракций составляет соответственно 2462,3 и 1596,2 г. Как видим, содержание корней более толстых фракций составляет соответственно 2462,3 и 1596,2 г. Как видим, содержание корней составляет соответственно 2462,3 и 1596,2 г. Как видим, содержание корней составляет соответственно 2462,3 и 1596,2 г. Как видим, содержание корней составляет соответственно составляет соответственно составляет соответственно составляет составляет

Таблица 2 Восстановительная способность корней сосны и дуба в чистых насаждениях

	Сосна		Д	уб	Трава		
Горизонт почвы, см	Масса корней, г/м²	% к об- щей массе	Масса корней, г/м²	% к об- щей массе	в сосно- вом на- саждении	в дубовом насажде- нии	
0—10	902,4	19,0 16,4	233,1 18,7	7,7	$\frac{3.9}{2.0}$	39,4 7,4	
10-20	2181,8 52,0	$\frac{45,9}{12,7}$	$\frac{217,5}{27,5}$	7,2 15,0	<u>—</u> 1,3		
2030	$\frac{139,2}{62,0}$	$\frac{2,9}{15,0}$	$\frac{715,0}{20,6}$	23,6 11,2	0,8	0,8	
30—45	$\frac{407,2}{46,2}$	8,6 11,3	689,9 18,7	22,7 10,2	<u>-</u>	0,1	
45—60	318,8 51,8	$\frac{6,7}{12,6}$	$\frac{573,3}{24,3}$	18,9 13,3	<u></u>	_	
60—75	$\frac{123,0}{34,0}$	2,6 8,3	$\frac{183,3}{17,3}$	<u>6,0</u> 9,6	<u></u>	_	
75—90	350,4 20,3	7,4 4,9	96,2 14,5	3,1 7,9	0,8	_	
90—105	$\frac{227,8}{24,6}$	4,8 6,0	30,6 14,9	1,0 8,1	0,4		
105—120	58,5 24,1	1,2 5,9	16,9 11,1	0,6	0,5	_	
120—135	14,8	0,3 3,1	49,6 8,9	1,6 4,9	0,4	***************************************	
135—150	14,8 8,8	$\frac{0.3}{2.2}$	$\frac{36,8}{4,3}$	1,2 2,3	<u></u>	_	
150—165	$\frac{6,3}{4,4}$	$\frac{-0,1}{-1,1}$	$\frac{48,6}{2,3}$	1,6 1,3	_	_	
165180	7, <u>1</u> 1,9	0,2 0,5	<u>58,0</u>	<u>1,9</u>			
180—200	-	_	<u>66,3</u> —	2,2		_	
200—220	_	<u>.</u>	<u>20,4</u>	0,7	_	_	
Всего	4752,1 409,9	100,0	3038,5 183,1	100,0	3,9 9,7	39,4 9,4	

 Π р и м е ч а н и е. В числителе — данные в год закладки траншей; в знаменателе — через четыре года после закладки.

ние толстых, скелетных корней у сосны примерно в 2 раза выше, чем у дуба. Это говорит о том, что дуб черешчатый к 100-летнему возрасту намного интенсивней, чем сосна обыкновенная, использует объем почвенного пространства, насыщая его физиологически активными корнями.

Наибольшее количество корней сосны, в пересчете на 1 м² монолита, сосредоточено в верхнем 20-сантиметровом слое почвы, где относительное содержание их составляет 55 %. Корни дуба наиболее интенсивно осваивают нижележащие горизонты почвы: на глубине от 20 до 60 см их содержится 65 %. В этом слое почвы масса корней дуба

в 2,3 раза выше, чем у сосны. Это объясняется способностью дуба в исследуемом возрасте образовывать глубоко проникающие корни [4, 5].

Через четыре года после закладки траншей для изучения регенерации был проведен повторный учет корней по почвенным блокам. Исследования показали, что корненаселенность в сосновых насаждениях выше, чем в дубовых. Масса восстановившихся корней дуба была равна 44,7 % от массы корней сосны. Восстановившиеся корни сосны по отношению к первоначальному количеству составили 8,6 %, дуба — 6,0 %. Следовательно, за один год в среднем регенерирует 2,1 % корней сосны

и 1,5 % корней дуба.

Анализируя распределение восстановившихся корней по фракциям толщины, отметим, что корни сосны и дуба в диаметре были не толще 6 мм. Содержание тонких корней сосны в монолите сечением 1 м² равнялось 331,4 г, а дуба в 2 раза меньше (167,4 г). Корни толщиной от 2 до 6 мм составляют соответственно 78,5 и 15,7 г. Таким образом, восстановившиеся корни сосны в чистом насаждении 100-летнего возраста интенсивнее используют объем почвенного пространства по сравнению с корнями дуба в чистом дубовом древостое. Отношение толстых корней сосны и дуба после постановки эксперимента увеличилось с 2 до 5 раз.

Глубина проникновения корней стала почти одинаковой. Распределение восстановившихся корней по горизонтам почвы также выравнялось. Однако корней сосны в верхнем 30-сантиметровом слое почвы все же больше, чем корней дуба. Так, относительное содержание корней

сосны в этой зоне составляет 44,1 %, а корней дуба 36,4 %.

Обращает на себя внимание распространение корней травы в исследованных насаждениях. В чистом дубовом древостое их в 10 раз больше, чем в чистых сосняках. Корни травы до постановки эксперимента как в сосновом, так и в дубовом насаждении располагались в верхнем 10-сантиметровом слое почвы. При повторном учете корненаселенность оказалась почти одинаковой: в чистом сосновом насаждении 9,7 г и в дубовом 9,4 г в пересчете на монолит сечением 1 м². Интересно, что восстановившиеся корни травы в сосновом древостое по отношению к первоначальному количеству составили 249 %, а в чистом дубовом только 24 %. Восстановившиеся корни травянистой растительности в чистых сосняках значительно глубже проникают в почву, чем в чистых дубняках.

Приведенные данные показывают, что сосна обыкновенная в чистых насаждениях 100-летнего возраста более интенсивно образует корни

после их повреждения по сравнению с дубом.

В смешанных насаждениях взаимоотношения сосны и дуба в корнеобитаемом горизонте складываются несколько по-иному. Масса корней дуба составляет 1430,7 на 1 м² монолита, а масса корней сосны только 407,5 г (табл. 3). Тонких или физиологически активных корней дуба также больше, чем корней сосны (соответственно 140,4 и 80,3 г). Таким образом, как в чистых насаждениях, так и в смешанных корни дуба посравнению с сосной намного интенсивней осваивают объем почвенного пространства за счет насыщения его физиологически активными корнями. Глубина проникновения корней сосны и дуба почти одинакова.

Общее количество корней сосны в 90-летнем насаждении сосредоточено в верхнем горизонте почвы толщиной 0—20 см (62,2 %), а основное количество корней дуба располагается в слое почвы 20—60 см (50,8 %).

По сравнению с чистыми, в смешанных насаждениях интенсивность разрастания корней значительно ниже. Так, общая масса корней сосны и дуба в первом случае составила 4752,1 и 3038,5 г, а во втором — 1838,2 г в пересчете на монолит сечением 1 м². Различие в корненасе-

Таблица 3 Восстановительная способность корней сосны и дуба в смещанных насаждениях

	Cod	сна `	Д			
Горизонт почвы, см	Масса корней, г/м²	% к общей массе	Масса корней, г/м²	% к общей массе	Трава, г/м²	
0—10	186,0 22,4	45,6 14,1	61,9 6,8	<u>4,3</u> 7,9	28,3 47,3	
10—20	67,2 32,7	16,6 20,6	$\frac{177,2}{3,7}$	12,4 4,3	<u>0,3</u> 3,8	
20—30	16,2 12,9	4,0 8,1	184,5 15,0	13,0 17,4	3,8	
30;45	5,8 21,8	1,4 13,7	$\frac{225,4}{7,3}$	15,7 8,4	3,3	
45—60	8,2	<u>2,0</u> 7,3	$\frac{315,5}{6,3}$	<u>22,1</u> 7,3	<u> </u>	
60—75	8,0 13,6	2,0 8,6	$\frac{136,8}{6,6}$	9,6 7,6	1,7	
75—90	13,4 14,2	3,3 8,9	$\frac{44,2}{0,5}$	3,1		
90—105	7,9 13,8	1,9 8,8	$\frac{110,6}{1,6}$	7,7 1,9	2,6	
105—120	21,6 9,8	5,3 6,2	63,6 11,2	4,4 13,0		
120—135	$\frac{21,0}{3,1}$	<u>5,1</u> 1,9	36,6 4,8	2,5 5,6	1,3	
135—150	25,5 0,8	6,2 0,5	45,7 12,6	$\frac{3,2}{14,6}$	0,3	
150—165	$\frac{16,6}{2,0}$	4,1	<u>-2,8</u> 8,6	<u>0,2</u> 9,9	0,2	
165—180	10,1	<u>2,5</u>	3,9 1,3	0,3 1,5	_	
180—200	_		22,0	<u>1,5</u>		
Bcero	407,5	100,0	1430,7 86,3	100,0	28,6 70,1	

Примечание. В числителе — данные в год закладки траншей; в знаменателе — через четыре года после закладки.

ленности с учетом небольшой разницы в возрасте дает сравнение среднего ежегодного прироста корневой массы, составляющее в чистых древостоях сосны и дуба соответственно 47,5 и 30,4 г, а в смешанных 20,4 г на 1 м 2 монолита.

Повторные эксперименты, проведенные через четыре года, показали, что корненаселенность монолитов изменилась здесь более существенно, чем в чистых древостоях. Основную массу восстановившихся корней составляют корни сосны. Так, если до постановки эксперимента их было 22,1 % по отношению к общему количеству, то относительное содержание восстановившихся корней сосны составило уже 64,8 %. Следовательно, в смешанных насаждениях 90-летнего возраста сосна обыкновенная наиболее отзывчива на механические повреждения кор-

ней. Масса восстановившихся корней сосны в 1,8 раза больше, чем масса корней дуба. Все восстановившиеся корни имели диаметр меньше 6 мм и распределены по горизонтам почвы более равномерно, чем до

постановки эксперимента.

Восстановление корней сосны в траншее для изучения регенерации составило за четыре года 40 %, дуба — 6 %; их средний ежегодный прирост соответственно 10,0 и 1,5 %. Данные показатели у сосны в смешанных насаждениях значительно выше, чем в чистых (2,1 %), у дуба одинаковы. Это говорит о том, что в смешанных насаждениях конкурентоспособность сосны выше, чем у дуба.

Сказанное позволяет глубже понять биологию исследованных пород и регулировать их взаимоотношения в смещанных фитоценозах.

ЛИТЕРАТУРА

[1]. Вашкулат П. Н. О различной регенеративной способности корней одного и того же дерева.— Бот. журн., 1959, т. 44, № 11, с. 1666—1673. [2]. Веретении кова. В. Отмирание и регенерация корневой системы Pinus silvestris в зависимости от условий снабжения корнеобитаемого слоя почвы кислородом и воздухом.— Бот. журн., 1959, т. 44, № 2, с. 202—209. [3]. Ивченков В. И. Влияние механических повреждений древесных растений на их сохранность и рост при проведении уходов за почвой в молодых защитных насаждениях Куйбышевского Заволжья: Автореф, дис. ...канд. с.-х. наук.— Волгоград, 1977. [4]. Калинин М. И. Корневые системы деревьев и повышение продуктивности леса.— Львов: Вища школа, 1975.— 175 с. [5]. Калинин М. И. Моделирование лесных насаждений.— Львов: Вища школа, 1978.— 207 с. [6]. Калинин М. И., Тиунчик В. К., Лантух В. С. Восстановительная способность корней сосны и дуба в смешанных сосново-дубовых культурах.— Изв. высш. учеб. заведений. Лесн. журн., 1981, № 5, с. 15—18. [7]. Калинин М. И., Тиунчик В. К., Лантух В. С. Влияние глубокого рыхления почвы на корневые системы древесных пород в культурах.— В кн.: Лесн. хоз-во, лесн., бум. и деревообраб. пром-сть. К.: Будівельник, 1982, вып. 13, с. 23—27. [8]. Николаев Д. В. Восстановление корневых систем деревьев после обрезки корней и кроны.— Бюл. глав. бот. сада, 1951, вып. 8, с. 59—63.

Поступила 17 октября 1983 г.

УДК 630*232.324.3.001.57

К ВОПРОСУ ОПТИМИЗАЦИИ СТРУКТУРЫ ДРЕВОСТОЯ ПРИ ВЫРАЩИВАНИИ ЛЕСА С УЧЕТОМ КОНКУРЕНЦИИ ДЕРЕВЬЕВ*

Н. А. КОСТЕНЧУК

Московский лесотехнический институт

В современном лесоразведении стало традиционным создание монокультур лучшими растениями, с равномерным размещением и оптимальной начальной густотой, эмпирически устанавливаемой для конкретных природных и хозяйственных условий. Эти же принципы составляют основу лесокультурных работ при лесовосстановлении. Теоретической базой такого способа служит метод проб и ошибок, когда оптимальным вариантом считается лучший из всех предшествовавших. При создании лесных культур широко пропагандируется использование сеянцев и саженцев высоких наследственных качеств, отбор растений с интенсивным приростом в высоту. Этот метод назван «селекцией в широком лесоводственном биоэкологическом смысле» [4]. В работе по диагностике роста сосны в чистых культурах [6] подчеркивается, что тенденции развития лесокультурного производства и лесной селекции

^{*} Автор выражает глубокую признательность акад. ВАСХНИЛ И. С. Мелехову, проф. Ю. Д. Сироткину и проф. А. Р. Родину, а также доц. В. В. Грибкову за предварительное обсуждение настоящей работы и конструктивные замечания.