А.Е. Алексеев, В.П. Емельянов, Н.И. Маркин

Архангельский государственный технический университет

Алексеев Александр Евгеньевич родился в 1958 г., окончил в 1980 г. Архангельский лесотехнический институт, доктор технических наук, профессор кафедры технологии конструкционных материалов и машиностроения Архангельского государственного технического университета. Имеет более 180 научных трудов в области лесопиления. Тел.: (8182) 21-61-63

Емельянов Владимир Павлович родился в 1946 г., окончил в 1969 г. Архангельский лесотехнический институт, кандидат технических наук, доцент, декан факультета промышленной энергетики Архангельского государственного технического университета, заслуженный работник высшей школы. Имеет более 80 печатных работ в области электромеханики и электропривода.

Тел.: (8182) 21-61-79

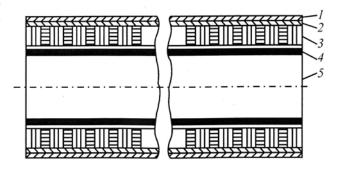
Маркин Николай Иванович родился в 1940 г., окончил в 1964 г. Ленинградский институт авиационного приборостроения, кандидат технических наук, доцент кафедры электроснабжения промышленных предприятий Архангельского государственного технического университета. Имеет более 10 печатных работ в области автоматизации технологических процессов и линейного электропривода в лесопромышленном комплексе.

Тел.: (8182) 21-89-36

ИССЛЕДОВАНИЕ ПАРАМЕТРОВ ЛИНЕЙНОГО ЭЛЕКТРОПРИВОДА УЗЛА РЕЗАНИЯ МАЯТНИКОВОГО ТОРЦОВОЧНОГО УСТРОЙСТВА

Обоснованы параметры линейного электропривода с расчетными показателями тягового усилия, хода и скорости выполнения операций применительно к узлу торцевания.

Ключевые слова: торцовочный станок, линейный привод.


Оборудование для выполнения операций подготовки и формирования длин пиломатериалов в процессе их торцевания должно обеспечивать точное и быстрое позиционирование доски или исполнительного механизма в шаговом или свободном режиме, возможность безинерционного торможения обрабатываемого материала или приспособления.

В торцовочных станках для преобразования вращательного движения в поступательное используют кривошипно-шатунные механизмы, пары винт — гайка и шестерня — рейка, гибкие передачи. Наличие гидравлических и пневматических распределителей, гидронасосов или компрессоров, трубопроводов, дросселей для регулирования скоростей перемещения исполнительных механизмов приводит к снижению надежности торцовочных устройств и точности торцевания пиломатериалов.

Линейный электропривод позволяет исключить промежуточные звенья, использующие механическую, гидравлическую или пневматическую передачи. В зависимости от области применения линейные двигатели могут

быть разделены на двигатели для получения механической силы, энергии и мощности. Среди низкоскоростных линейных асинхронных двигателей наиболее высокие технико-экономические показатели имеют цилиндрические — ЦЛАД (рис. 1). Это объясняется тем, что в них отсутствуют лобовые части и соответствующие потери, а также поперечный краевой эффект [1]. Зазор между индуктором и вторичным элементом может быть минимальным, его выбирают с точки зрения механики. Вторичный элемент, приводящий в движение исполнительный механизм, представляет собой цилиндр. Для увеличения тягового усилия он может быть омеднен. Индуктор (неподвижная часть) изготавливают в виде чередующихся пакетов колец (шайб) из

Рис. 1. Устройство ЦЛАД: I — катушки, 2 — стальное ярмо, 3 — пакет пластин из электротехнической стали, 4 — медное покрытие вторичного элемента, 5 — подвижный вторичный элемент

электротехнической стали и катушек, последние приклеивают. Ярмо, охватывающее

индуктор, должно иметь прорезь для снижения потерь на вторичные токи. Подшипниковые узлы выполняют обычно на подшипниках скольжения. Линейную скорость v_1 бегущего электромагнитного поля индуктора определяют по формуле [2]

$$v_1 = 2\tau f_1, \tag{1}$$

где τ – полюсное деление, м;

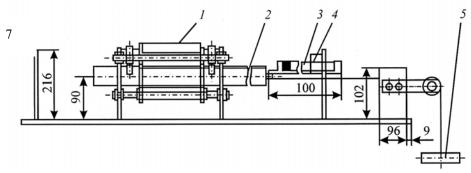
 f_1 – частота питающего напряжения, Γ ц.

Вторичный элемент, движущийся относительно индуктора со скоростью v и некоторым скольжением

$$S = (v_1 - v)/v_1, \tag{2}$$

соединен с рабочим механизмом, поэтому работа электропривода в целом зависит от величины и характера изменения момента сопротивления. В качестве подобного исполнительного механизма рассматривали узел резания маятникового торцовочного устройства.

Применение ЦЛАД для привода позволяет упростить конструкцию торцовочного устройства, обеспечивает возможность увеличения скорости перемещения узла торцевания и необходимое регулирование скорости движения исполнительного механизма, повышение надежности работы станка и качества обработки пиломатериалов. Отсутствие кинематических связей статора и вторичного элемента, а также промежуточного рабочего органа, значительно снижает механические потери. Линейный асинхронный


двигатель обеспечивает торможение вторичного элемента и его точный останов. В настоящее время торцовочные приводы от ЦЛАД в лесопильном производстве не используют. В связи с этим необходимо изучить возможность применения электропривода торцовочного устройства с линейным асинхронным двигателем.

Характеристики каждого двигателя, имеющего индивидуальные особенности, необходимо согласовывать с характеристиками исполнительного механизма. Поэтому научное обоснование технологических параметров торцовочного устройства с приводом перемещения пилы от ЦЛАД и создание торцовочного станка с ЦЛАД являются актуальными вопросами совершенствования технологического оборудования деревообрабатывающих производств.

При позиционном торцевании пилу подают на неподвижную заготовку. Сложение двух одновременно происходящих движений — резания и подачи — при пилении круглой пилой приводит к циклоидальной абсолютной траектории резания. Ввиду малости соотношения скоростей подачи и резания u/v в расчетах абсолютную траекторию резания принимали за окружность.

В ходе эксперимента нагрузки, создаваемые исполнительным механизмом, имитировали на испытательном стенде (рис. 2).

Согласно [1], уравнение, характеризующее механические характеристики ЦЛАД, представляет собой дифференциальное уравнение второго по-

рядка:

$$\left(\frac{F_{c}}{m} + x''\right) \left(A(x')^{2} - Bx' + C\right) - D(v_{1} - x')K = 0,$$
(3)

где

 $F_{\rm c}$ – сила статического сопротивления движению, H;

m — общая масса вторичного элемента и приводимых в движение им тел, кг;

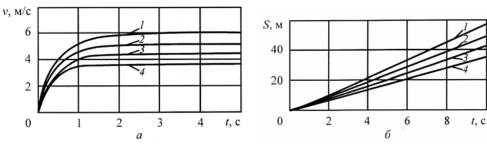
x – перемещение, м;

A, B, C, D – коэффициенты;

Рис. 2. Принципиальная конструкция стенда: I – цилиндрический двигатель; 2 – вторичный элемент, 3 – гребенчатая линейка, 4 – фотодатчик, 5 – нагрузка

K — коэффициент, значение которого зависит от положения вторичного элемента по отношению к статору двигателя [1], K=1.

Уравнение справедливо для процесса разгона, торможения в генераторном режиме, а также при противовключении. Коэффициенты уравнения зависят от параметров двигателя и источника питания. Основные слагаемые силы сопротивления $\overrightarrow{F_c}$: силы трения между вторичным элементом и подшипниками; силы трения в самих подшипниках; сила трения между вторичным элементом и воздухом; сила тяжести груза.


Уравнение движения вторичного элемента для холостого хода с учетом параметров исследуемого ЦЛАД имеет следующий вид:

$$x''(1,337 \cdot 10^{4}(x')^{2} - 1,605 \cdot 10^{5} x' + 4,818 \cdot 10^{5}) - 5,988 \cdot 10^{3}(6 - x') = 0.$$
 (4)

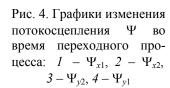
При исследовании тяговых характеристик использовали грузы массой 2,5; 5,0; 8,5 кг. Модули сил сопротивления составляли соответственно 24,5; 49,0; 83,3 Н. С учетом этого уравнение движения вторичного элемента в зависимости от нагрузки

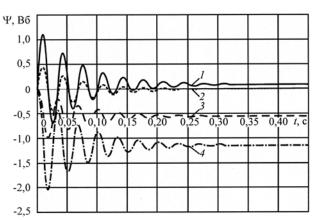
$$\left(\frac{F_{\rm c}}{m} + x\right) \left(1,337 \cdot 10^4 \left(x'\right)^2 - 1,605 \cdot 10^5 \, x' + 4,818 \cdot 10^5\right) - 5,988 \cdot 10^3 \left(6 - x'\right) = 0 \ . \tag{5}$$

Решение уравнения движения ротора ЦЛАД при различных нагрузках получено методом численного интегрирования. По известным функции и граничным условиям при холостом ходе численно определены значения функций v(t) и x(t) для различных усилий. На рис. 3 при холостом ходе и нагрузке 2,5; 5,0; 8,5 кг представле-

ны графики v(t) и x(t) (x – перемещение S).

Рис. 3. Графики скоростей (*a*) и перемещений (*б*) в зависимости от времени на холостом ходу (*I*) и при нагрузках ЦЛАД – 2,5 (2), 5,0 (3), 8,5 кг (4)


Электромагнитные переходные процессы в традиционных асинхронных двигателях исследованы достаточно хорошо [2], в то время как решению этого вопроса для линейных асинхронных двигателей уделено недостаточно внимания.


Нами сделана попытка оценить влияние электромагнитных переходных процессов на работу ЦЛАД. За основу использовано известное уравнение Горева [3]. При этом введены следующие допущения: не учитывается влияние продольного краевого эффекта, насыщения магнитопровода и высших

гармоник; фазные обмотки одинаковы и включены в звезду без нейтрального провода; двигатель включен в сеть бесконечно большой мощности.

Результаты теоретических исследований характеристик ЦЛАД с учетом электромагнитных переходных процессов были представлены в виде решения системы дифференциальных уравнений трехфазного ЦЛАД в условиях движения с произвольной скоростью в координатах u, v. Полученные результаты представлены на рис. 4, 5.

Как показали проведенные исследования, влияние электромагнитных переходных процессов в низкоскоростных ЦЛАД незначительно, т. е. в инженерных расчетах это можно не учитывать, что значительно упрощает расчеты.

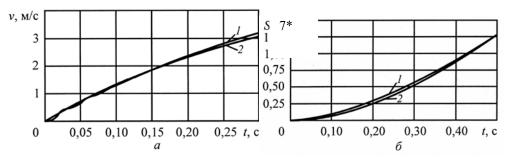


Рис. 5. Графики изменения скорости (a) и перемещения (δ) вторичного элемента с учетом (I) и без учета (2) электромагнитных переходных процессов

Таким образом, наиболее приемлемым способом регулирования скорости (прежде всего с точки зрения энергетических показателей) является частота регулирования питающей сети.

Выводы

1. На основе анализа конструкций линейных асинхронных электродвигателей с точки зрения использования их в качестве привода исполнительных устройств для торцевания пиломатериалов предложен ЦЛАД.

- 2. Разработана методика расчета ЦЛАД с массивным ферромагнитным вторичным элементом; обоснованы его параметры с расчетными показателями тягового усилия, перемещения и скорости выполнения операций.
- 3. Решены уравнения движения вторичного элемента с учетом сил трения на холостом ходу и при различных нагрузках; получены зависимости перемещения вторичного элемента от нагрузки, учитывающие время разгона и характер перемещения при различных нагрузках, а также временн∉е зависимости потокосцепления с учетом электромагнитных переходных процессов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Веселовский, О.Н.* Линейные асинхронные двигатели [Текст] / О.Н. Веселовский. М.: Энергоатомиздат, 1991. 256 с.
- 2. *Копылов, Б.К.* Электрические машины [Текст] / Б.К. Копылов. М.: Высш. шк. М.: Логос, 2000. 607 с.
- 3. *Соколов, М.М.* Электропривод с линейными асинхронными двигателями [Текст] / М.М. Соколов, Л.К. Сорокин. М.: Энергия, 1974. 136 с.

Поступила 31.10.07

A.E. Alekseev, V.P. Emeljanov, N.I. Markin Arkhangelsk State Technical University

Investigation of Linear Drive Parameters of Cutting Angle for Swing Butt Device

Parameters of linear electric drive with design indices of drag force, operation progress and speed with reference to butting angle are justified.

Keywords: trimmer, linear drive.