

УДК 531

С.И. Морозов, М.В. Попов

Морозов Станислав Иванович родился в 1929 г., окончил в 1952 г. Ленинградскую лесотехническую академию, доктор технических наук, профессор, заведующий кафедрой теоретической механики Архангельского государственного технического университета, член-корреспондент РИА, заслуженный деятель науки и техники РФ. Имеет более 180 печатных работ в области изучения устойчивости температурнонапряженного рельсового пути, закрепления его от угона рельсов, удара тел, применения ЭВМ при решении задач механики.

Попов Михаил Витальевич родился в 1951 г., окончил в 1973 г. Архангельский лесотехнический институт, кандидат технических наук, доцент кафедры теоретической механики Архангельского государственного технического университета. Имеет более 40 научных трудов в области конструирования, технологии ремонта и содержания верхнего строения лесовозных узкоколейных железных дорог.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАССЛЕДОВАНИЯ ДОРОЖНО-ТРАНСПОРТНЫХ ПРОИСШЕСТВИЙ

Выведены расчетные зависимости при соударении плоских тел, которые вместе с материалами расследования случаев соударения автомобилей на практике позволяют дать объективную оценку ДТП.

Ключевые слова: плоские тела, удар, расчетные зависимости.

Явление удара тел широко встречается в технике, в том числе на лесозаготовках и лесотранспорте: при валке деревьев, погрузке и разгрузке бревен, ударе плотов о наплавные сооружения и т.д. Поэтому необходимо знать методы и способы решения таких задач.

Общеизвестно [1, 5], что в нормальных условиях автомобили перемещаются в плоскости дороги, т.е. совершают плоско-параллельное движение. При их соударении необходимо знать в общем случае способы решения задачи теоретической механики о движении плоских тел, в частности соударении двух плоских тел. В этом и состоит цель данной статьи.

Расчетная схема показана на рис. 1. Два тела (1 и 2) массами m_1 и m_2 (1 – ударяющее, 2 – ударяемое) движутся до удара со скоростями v_1 и v_2 центров масс C_1 и C_2 и соударяются в точке E. Линия cd проходит через

точку касания тел E и направлена по нормали к поверхности тел в точке E. Ее называют линией удара.

На этой линии лежат нормальные оси координат n_1 и n_2 . Они имеют начало в точке E и направлены внутрь каждого тела. Касательные оси координат τ_1 и τ_2 направлены перпендикулярно к нормальным ($\tau_1 \perp n_1$, $\tau_2 \perp n_2$). Оси n, τ и b образуют между собой правостороннюю систему координат (оси b_1 и b_2 — бинормали).

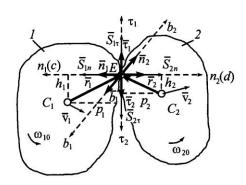


Рис. 1. Расчетная схема

На рис. 1 обозначены:

 $\overline{S}_{1n},\overline{S}_{2n}$ – импульсы нормальных реакций;

 $\overline{S}_{1 au}$, $\overline{S}_{2 au}$ – импульсы касательных реакций;

 $\omega_{10}, \, \omega_{20} \, - \,$ угловые скорости тел до удара;

 h_1, p_1, h_2, p_2 – координаты точек C_1 и C_2 в системах координат n_1, τ_1 и $n_2, \tau_2;$

 \bar{r}_1, \bar{r}_2 – радиусы-векторы точки E, проведенные из точек C_1 и C_2 ;

 $\overline{n}_1, \overline{n}_2, \overline{\tau}_1, \overline{\tau}_2$ – орты осей плоской системы координат.

Согласно аксиомам механики имеем

$$egin{aligned} \overline{S}_{1n} &= -\overline{S}_{2n} \ \text{ или } S_{1n} &= S_{2n}; \ \overline{S}_{1 au} &= -\overline{S}_{2 au} \ \text{ или } S_{1 au} &= S_{2 au}. \end{aligned}$$

Составляем расчетные уравнения, пользуясь тем, что всякое перемещение плоской фигуры в ее плоскости можно осуществить при помощи двух движений: поступательного вместе с полюсом (за который в данном случае принимаем центры масс C_1 и C_2) и вращательного вокруг полюса [1].

Пользуясь теоремой о движении центров масс (об изменении импульсов центров масс) и теоремой об изменении моментов количеств движения, получаем шесть уравнений [3]: четыре первых – при поступательном движении, два вторых – при вращательном.

$$m_{1}(\overline{u}_{1}\overline{\tau}_{1} - \overline{v}_{1}\overline{\tau}_{1}) = S_{1\tau};$$

$$m_{1}(\overline{u}_{1}\overline{n}_{1} - \overline{v}_{1}\overline{n}_{1}) = S_{1n};$$

$$m_{2}(\overline{u}_{2}\overline{\tau}_{2} - \overline{v}_{2}\overline{\tau}_{2}) = S_{2\tau};$$

$$m_{2}(\overline{u}_{2}\overline{n}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{2}(\overline{u}_{2}\overline{n}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{3}(\overline{u}_{2}\overline{n}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{4}(\overline{u}_{2}\overline{n}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{5}(\overline{u}_{2}\overline{n}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{7}(\overline{u}_{2}\overline{n}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{8}(\overline{u}_{2}\overline{u}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{8}(\overline{u}_{2}\overline{u}_{2} - \overline{v}_{2}\overline{n}_{2}) = S_{2n};$$

$$m_{8}(\overline{u}_{2}\overline{u}_{2} - \overline{v}_{2}\overline{u}_{2}) = S_{2n};$$

$$\begin{split} & \omega_1 = \omega_{10} + \frac{p_1 S_{1\tau}}{I_1} + \frac{h_1 S_{1n}}{I_1} \,; \\ & \omega_2 = \omega_{20} + \frac{p_2 S_{2\tau}}{I_2} + \frac{h_2 S_{2n}}{I_2} \,, \end{split} \tag{2}$$

где I_1 , I_2 – моменты инерции тел 1 и 2.

В эти шесть уравнений входят восемь неизвестных величин:

$$\begin{split} \overline{u}_{1}\overline{\tau}_{1} &= \overline{\mathbf{v}}_{1}\overline{\tau}_{1} + \frac{S_{1\tau}}{m_{1}}\,;\\ \overline{u}_{1}\overline{n}_{1} &= \overline{\mathbf{v}}_{1}\overline{n}_{1} + \frac{\overline{S}_{1n}}{m_{1}}\,;\\ \overline{u}_{2}\overline{\tau}_{2} &= \overline{\mathbf{v}}_{2}\overline{\tau}_{2} + \frac{\overline{S}_{2\tau}}{m_{2}}\,;\\ \overline{u}_{2}\overline{n}_{2} &= \overline{\mathbf{v}}_{2}\overline{n}_{2} + \frac{\overline{S}_{2n}}{m_{2}}\,;\\ \omega_{1} &= \omega_{10} + \frac{p_{1}S_{1\tau}}{I_{1}} + \frac{h_{1}S_{1n}}{I_{1}}\,;\\ \omega_{2} &= \omega_{20} + \frac{p_{2}S_{2\tau}}{I_{2}} + \frac{h_{2}S_{2n}}{I_{2}}\,. \end{split}$$

Таким образом, для решения задачи удара двух плоских тел полностью необходимо определить еще две дополнительные величины. Одну из них получим по условию Ньютона [5]:

$$\overline{u}_1'\overline{n}_1 + \overline{u}_2'\overline{n}_2 = -\varepsilon(\overline{v}_1'\overline{n}_1 + \overline{v}_2'\overline{n}_2), \tag{3}$$

где штрихом обозначены скорости точки E до и после удара.

Выразим их через скорости точек C_1 и C_2 [1]:

$$\overline{\mathbf{v}}_{1}' = \overline{\mathbf{v}}_{1} + \overline{\mathbf{\omega}}_{10} \times \overline{\mathbf{r}}_{1}; \qquad \overline{\mathbf{u}}_{1}' = \overline{\mathbf{u}}_{1} + \overline{\mathbf{\omega}}_{1} \times \overline{\mathbf{r}}_{1};
\overline{\mathbf{v}}_{2}' = \overline{\mathbf{v}}_{2} + \overline{\mathbf{\omega}}_{20} \times \overline{\mathbf{r}}_{2}; \qquad \overline{\mathbf{u}}_{2}' = \overline{\mathbf{u}}_{2} + \overline{\mathbf{\omega}}_{2} \times \overline{\mathbf{r}}_{2}.$$
(4)

Подставим (4) в (3) и, преобразовывая, получим первое дополнительное уравнение в виде

$$(1+\varepsilon)A_1 + S_nG + S_\tau H = 0, (5)$$

где A_1 – скоростной коэффициент в момент начала удара, $A_1=\overline{\nabla}_1\overline{n}_1+\overline{\nabla}_2\overline{n}_2+\overline{h}_1\overline{\omega}_{10}+\overline{h}_2\overline{\omega}_{20}$;

G, H – инерциальные коэффициенты:

$$\begin{split} G = & \frac{1}{m_1} + \frac{1}{m_2} + \frac{h_1^2}{I_1} + \frac{h_2^2}{I_1} \; ; \\ H = & \frac{p_1 h_1}{I_1} + \frac{p_2 h_2}{I_2} \; . \end{split}$$

Второе дополнительное уравнение накладывает ограничения на проскальзывание соударяющихся тел в точке E. Здесь возможны три случая:

а) тела гладкие: $S_{\tau} = 0$;

- б) удар происходит с проскальзыванием в точке E: $S_{\tau} = S_n f_{\pi}$, где f_{π} динамический коэффициент трения;
- в) удар в точке E происходит без проскальзывания. При этом должно выполняться условие

$$\overline{u}_1'\overline{\tau}_1 + \overline{u}_2'\overline{\tau}_2 = 0,$$

отсюда

$$A_2 + G_1 S_{\tau} + HS_n = 0, (6)$$

где A_2 – скоростной коэффициент после удара,

$$A_2 = \overline{u}_1 \overline{\tau}_1 + \overline{u}_2 \overline{\tau}_2 + \overline{p}_1 \overline{\omega}_{10} + \overline{p}_2 \overline{\omega}_{20};$$

 G_1 – инерциальный коэффициент,

$$G_1 = \frac{1}{m_1} + \frac{1}{m_2} + \frac{p_1^2}{I_1} + \frac{p_2^2}{I_1}.$$

Совместное решение уравнений (5) и (6) сводим в табл. 1.

Таблица 1

Вид взаимодействия тел	Расчетные уравнения		
в точке соударения	$S_{ au}$	S_n	
С проскальзыванием	$S_n f_{\scriptscriptstyle m{m{m{m{m{\mathcal{I}}}}}}$	$-\frac{(1+\varepsilon)A_{_{\rm I}}}{G+Hf_{_{\rm II}}}$	
Без проскальзывания	$\frac{H(1+\varepsilon)A_1 - GA_2}{B}$	$\frac{HA_2 - G_1(1+\varepsilon)A_1}{B}$	

Примечание. B — дополнительный инерциальный коэффициент, $B = GG_1 - H^2$.

Таким образом, задача о соударении двух плоских тел нами решена полностью. Аналогичное решение приведено в работе [2], где дана ссылка на работу [4, 5] с замечанием о физическом смысле коэффициента восстановления є.

Пример. Удар бревна (в плоскости рисунка) о платформу. Бревно массой $m_1=400$ кг и длиной $2\,\ell=4$ м падает с некоторой высоты на платформу массой $m_2==1600$ кг, шириной 2L=2 м, толщиной $\Delta=0,1$ м (рис. 2). Рессорами (пружинами) она связана с неподвижной поверхностью дороги. Соударение бревна с платформой происходит в точке E. Расстояние ее до вертикальной оси платформы a=0,5 м.

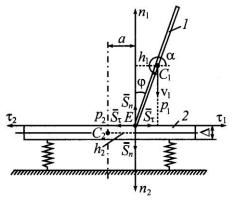


Рис. 2. Удар бревна о платформу

В момент соударения скорость центра масс бревна $v_1=2$ м/с и направлена по вертикали вниз. До удара платформа неподвижна, т.е. $v_2=0$. Также равны нулю скорости вращения бревна и платформы до удара: $\omega_{10}=0$; $\omega_{20}=0$. Угол наклона бревна к вертикали в момент удара $\phi=30$ °.

Удар является частично упругим. Считая пол платформы деревянным, полагаем $\varepsilon = 0.5$ [2].

Рассмотрим решение задачи по этапам.

1. Находим вспомогательные величины. На рис. 2 для каждого тела показаны: оси координат τ и n, импульсы ударных сил S_{τ} и S_n , координаты центров масс (точек C_1 и C_2), расчетный угол α_1 для скорости v_1 . Согласно рисунку $\alpha_1 = 270$ °.

По рис. 2 находим

$$p_1 = \ell \cos \varphi = 2 \frac{\sqrt{3}}{2} = \sqrt{3} = 1,732 \text{M};$$

 $h_1 = \ell \sin \varphi = 2 \cdot 0,5 = 1 \text{ M};$
 $p_2 = \frac{1}{2} \Delta = 0,05 \text{ M};$
 $h_2 = 0,5 \text{ M}.$

2. Вычисляем значения моментов инерции тел 1 и 2 относительно точек C_1 и C_2 , рассматривая оба тела как стержни:

$$I_1 = \frac{m_1 (2\ell)^2}{12} = \frac{400 \cdot 4^2}{12} = 533 \text{kg} \cdot \text{m}^2;$$

$$I_2 = \frac{m_2 (2L)^2}{12} = \frac{1600 \cdot 2^2}{12} = 533 \text{kg} \cdot \text{m}^2.$$

3. Определяем инерциальные и скоростные коэффициенты:

$$G = \frac{1}{m_1} + \frac{1}{m_2} + \frac{h_1^2}{I_1} + \frac{h_2^2}{I_2} = \frac{1}{400} + \frac{1}{1600} + \frac{1^2}{533} + \frac{0.5^2}{533} = 5,470 \cdot 10^{-3} \text{ kg}^{-1};$$

$$G_1 = \frac{1}{m_1} + \frac{1}{m_2} + \frac{p_1^2}{I_1} + \frac{p_2^2}{I_2} = \frac{1}{400} + \frac{1}{1600} + \frac{1,732^2}{533} + \frac{0.05^2}{533} = 8,755 \cdot 10^{-3} \text{ kg}^{-1};$$

$$H = \frac{\overline{p}_1 \overline{h}_1}{I_1} + \frac{\overline{p}_2 \overline{h}_2}{I_2} = -\frac{1,732 \cdot 1}{533} - \frac{0.05 \cdot 0.5}{533} = -3,294 \cdot 10^{-3} \text{ kg}^{-1};$$

$$B = G G_1 - H^2 = 3,727 \cdot 10^{-5} \text{ kg}^{-1};$$

$$A_1 = \overline{v}_1 \overline{n}_1 + \overline{v}_2 \overline{n}_2 + \overline{h}_1 \overline{\omega}_{10} + \overline{h}_2 \overline{\omega}_{20} = \overline{v}_1 \overline{n}_1 = -2 \text{ m/c};$$

$$A_2 = \overline{v}_1 \overline{\tau}_1 + \overline{v}_2 \overline{\tau}_2 + \overline{p}_1 \overline{\omega}_{10} + \overline{p}_2 \overline{\omega}_{20} = 0.$$

4. По формулам из табл. 1 вычисляем импульсы ударных сил для различных коэффициентов трения торца бревна о платформу. Результаты расчетов приведены в табл. 2. Эти данные показывают, что с увеличением

Таблица 2

Duayayya f	Наличие	Расчетные значения, Н · с	
Значения f_{μ}	проскальзывания	$S_{ au}$	S_n
0	Есть	0	548,56
0,1	»	58,37	583,70
0,2	»	124,73	632,67
0,3	»	200,85	669,52
≥ 0.376	Нет	265,15	704,72

шероховатости поверхности тел значения импульсов S_{τ} и S_n возрастают. При $f_n = 0.376$ они достигают максимума, т.е. проскальзывания не будет.

Если проскальзывания тел в точке их соударения не происходит, то значения импульсов находят по формулам табл. 1. При $A_2 = 0$ получаем

$$S_{\tau} = \frac{H(1+\varepsilon)A_1}{B}\;; \qquad \qquad S_n = \frac{G_1(1+\varepsilon)A_1}{B}\;. \label{eq:State}$$

Подставляя эти выражения в формулу

$$S_{\tau} \leq S_n f_{\pi}$$

находим предельное значение коэффициента трения, который обозначим f_{π} :

$$f_{\mathrm{A}} \geq \frac{S_{\mathrm{t}}}{S_{n}} = -\frac{H}{G_{\mathrm{l}}}.$$

Для рассматриваемого примера

$$f_{\pi} \ge \frac{3,294 \cdot 10^{-3}}{8,755 \cdot 10^{-3}} = 0,376.$$

Соответствующие этому случаю значения S_{τ} и S_n равны:

$$S_{\tau} = \frac{-3,296 \cdot 10^{-3} (1 + 0,5)(-2)}{3,706 \cdot 10^{-5}} = 266,8 \text{ H} \cdot \text{c};$$

$$S_n = -\frac{8,758 \cdot 10^{-3} (1 + 0,5)(-2)}{3,706 \cdot 10^{-5}} = 709,0 \text{ H} \cdot \text{c}.$$

5. Определяем скорости центров масс после удара при отсутствии проскальзывания тел:

$$\begin{split} \overline{u}_1 \overline{\tau}_1 &= \mathbf{v}_1 \cos \alpha_1 + \frac{S_\tau}{m_1} = 2 \cos 270 \,^\circ + \, \frac{266,8}{400} = 0,666 \,\,\mathrm{m/c}; \\ \overline{u}_1 \overline{n}_1 &= \mathbf{v}_1 \sin \alpha_1 + \frac{S_n}{m_1} = 2 \sin 270 \,^\circ + \, \frac{709,0}{400} = -\,0,228 \,\,\mathrm{m/c}; \\ \overline{u}_2 \overline{\tau}_2 &= \mathbf{v}_2 \cos \alpha_2 + \frac{S_\tau}{m_2} = \frac{266,8}{1600} = 0,167 \,\,\mathrm{m/c}; \\ \overline{u}_2 \overline{n}_2 &= \mathbf{v}_2 \sin \alpha_2 + \frac{S_n}{m_2} = \frac{709,0}{1600} = 0,443 \,\,\mathrm{m/c}. \end{split}$$

6. Находим угловые скорости тел после удара:

$$\omega_{1} = \omega_{10} - \frac{S_{n}h_{1}}{I_{1}} + \frac{S_{\tau}p_{1}}{I_{1}} = 0 - \frac{709,0 \cdot 1}{533} + \frac{266,8 \cdot 1}{533} = -0,830 \text{ c}^{-1};$$

$$\omega_{2} = \omega_{20} - \frac{S_{n}h_{2}}{I_{2}} + \frac{S_{\tau}p_{2}}{I_{2}} = 0 - \frac{709,0 \cdot 0,5}{533} + \frac{266,8 \cdot 0,05}{533} = -0,640 \text{ c}^{-1}.$$

Анализ результатов решения этого примера можно продолжить, например, исследовать закономерности изменения расчетных параметров от угла наклона бревна ф, а также рассмотреть движение бревна и платформы после удара и т.д.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бутенин, Н.В.* Курс теоретической механики [Текст]. Т.2 / Н.В. Бутенин, А.Я. Лунц, Д.Р. Меркин. М.: Наука, 1971. 362 с.
- 2. *Иванов, И.П.* Динамика систем с механическим соударением [Текст] / И.П. Иванов. М.: Междунар. система образования, 1997. 336 с.
- 3. *Морозов, С.И.* Классическая теория удара [Текст]: конспект лекций по соударению плоских тел / С.И. Морозов, В.С. Морозов. Архангельск: Изд-во АГТУ, 1999. 45 с.
- 4. *Морозов, С.И.* Классическая теория удара [Текст]: конспект лекций по элементарной теории удара / С.И. Морозов, М.В. Попов. Архангельск: Изд-во АГТУ, 1998. 30 с.
- 5. *Ньютон, И.* Математические начала натуральной философии [Текст] / И. Ньютон // Сб. тр. акад. А.Н. Крылова. Т. 7. М; Л.: Изд. АН СССР, 1981. С. 13–114.
- 6. *Пановко*, *Я.Г.* Введение в теорию механического удара [Текст] / Я.Г. Пановко. М.: Наука, 1977. 224 с.

Архангельский государственный технический университет

Поступила 28.12.05

S.I. Morozov, M.V. Popov

Theoretical Bases of Investigation of Traffic Accidents

The design dependencies are drawn under collision of plane bodies that together with materials of cars collision investigation in practice allow to provide an objective assessment of traffic accidents.