M≥ 2

ЛЕСНОЙ ЖУРНАЛ

1987

УДК 66.045:536.244

РАСЧЕТНО-АНАЛИТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ТЕРМИЧЕСКОГО КОНТАКТНОГО СОПРОТИВЛЕНИЯ ТРУБ С НАВИТЫМИ ЗАВАЛЬЦОВАННЫМИ РЕБРАМИ

В. Б. КУНТЫШ, В. И. МЕЛЕХОВ, Л. М. ФЕДОТОВА, Н. М. КУЗНЕЦОВ

Архангельский лесотехнический институт

В современных конструкциях лесосушильных камер основной элемент, определяющий их энергетическую эффективность, калориферы. Для применения в калориферах наиболее перспективны трубы, оребренные навитой алюминиевой лентой, основание которой завальцовано роликом в спиральную однозаходную канавку на несущей трубе (рис. 1, *a*) или отбортовано в виде горизонтальной полки с образованием *L*-ребра (рис. 1, *б*), наматываемого под натяжением на несущую трубу как с гладкой поверхностью, так и с накатанными на ней продольными бороздками.

Рис. 1. Типы труб: a - c навитыми завальцованными ребрами; $\delta - c L$ -образными ребрами; 1 -несущая труба; 2 -термопара для измерения температуры под основанием ребра; 3 -ребро; 4 -термопара для измерения температуры у основания ребра; 5 -основание (полка) ребра

Такие калориферы с большой эффективностью можно применять в теплорекуператорах сушильных камер непрерывного действия, в производстве фанеры и древесноволокнистых плит, в бумаго- и картоноделательных машинах, в «сухих» градириях лесохимического и гидролизного производств.

Пучки труб с ребрами из ленты расходуют в 2 раза меньше алюминия и имеют аэродинамическое сопротивление в среднем на 35...40 % ниже по сравнению с пучками из биметаллических труб, оребренных накатными (экструзированными) алюминиевыми ребрами. Однако количественное соотношение между указанными типами ребристых труб, применяемых, например, для изготовления пучков серийных аппаратов воздушного охлаждения (АВО), приблизительно следующее: 75...80 % составляют трубы с накатными ребрами и лишь 20 % — оребренные лентой.

Сложившаяся ситуация частично объясняется принятым подходом к исследованию средних теплоаэродинамических характеристик пучков труб, оребренных лентой [1, 3, 4, 7, 8]. В этих исследованиях определены общий приведенный коэффициент теплоотдачи, включающий и тепловую проводимость контакта несущая труба — ребро для всех типоразмеров промышленных труб. Величина, обратная тепловой проводимости контакта, термическое контактное сопротивление (ТКС), обусловленное температурным перепадом в зоне завальцовки ребра из-за отсутствия гомогенного соединения. ТКС зависит от глубины и усилия

завальцовки ребра, физико-механических свойств сопрягаемых материалов, температуры греющей среды, принятой технологии завальцовки ребра. Собственно приведенный коэффициент теплоотдачи ребристой поверхности — функция параметров оребрения. Поэтому полученные частные критериальные уравнения теплоотдачи для конкретных типоразмеров пучков труб не пригодны для построения обобщенных критериальных уравнений.

Цель исследования — разработать метод выделения ТКС из общего экспериментально измеренного сопротивления теплопереходу внутри ребер через их поверхность и контактную зону труб, оребренных навитой завальцованной лентой, а также определить значения ТКС для различных технологических параметров ребра и трубы.

Величину ТКС (R_к, (м² · K)/Вт) в общем случае определяют из выражения

$$R_{\rm K} = \Delta T_{\rm K}/q_{\rm K},\tag{1}$$

где

ΔT_к — температурный перепад на механическом контакте ребро — стенка несущей трубы, К;

- $q_{\rm R} = Q/F_{\rm R}$ плотность теплового потока через контактную зону, Вт/м²;
 - Д тепловой поток, проходящий через ребристую поверхность, Вт;
 - F_к площадь поверхности контакта завальцованного ребра, м².

Небольшая глубина завальцовки ребра исследованных труб [3, 4, 7, 8] h_3 , равная приблизительно 0,3 мм, затрудняет надежное и достоверное прямое измерение температурного перепада $\Delta T_{\rm R}$, а следовательно, определение ТКС по формуле (1). Значительное число геометрических и физико-механических параметров, влияющих на ТКС, не учитывается в полном объеме даже современной теорией [9], что снижает возможности ее использования при расчетах теплового сопротивления контакта ребристых труб.

В трубчато-ребристых теплообменниках с насадными ребрами для определения $R_{\rm E}$ [5, 6] используют метод сравнительных испытаний теплопередачи теплообменников из труб идентичной геометрии, но отличающихся методом обеспечения механического контакта между ребром и трубой. Однако в этой методике требуется одновременно определять термическое сопротивление теплоотдачи от оребрения к воздуху и от греющей среды к внутренней поверхности трубы. В таком виде предлагаемый метод не удается реализовать для выделения ТКС завальцованных ребер из средних теплообменных характеристик исследованных пучков труб, оребренных лентой [1, 3, 4, 7, 8]. В проведенных исследованиях этих пучков отсутствуют данные по коэффициентам теплопередачи и внутренней теплоотдачи.

Этн ограничения устранены в разработанном нами методе определения ТКС применительно к завальцованным ребрам. Метод также базируется на принципе сравнительных тепловых исследований по единой методике на одной экспериментальной установке при вынужденной конвекции пучков из ребристых труб идентичной или близких геометрии и формы оребрения.

Исследования проведены в одинаковом диапазоне изменения температуры воздуха и его скорости, что удовлетворяет условию соблюдения геометрического, теплового и гидромеханического подобия опытных пучков. Средний приведенный коэффициент теплоотдачи α пучка труб с завальцованными ребрами определяют с учетом термической проводимости контакта. В этом случае термопары для измерения средней температуры стенки несущей трубы $t_{\rm cr}$ закладывают под основание завальцованного ребра (рис. 1, a), а температурный напор для вычисления α принимают равным $t_{\rm cr} - t_1$ (здесь t_1 — средняя температура потока воздуха, набегающего на трубу-калориметр).

Результаты опытов представлены в критернях подобия и описаны критериальным уравнением вида

N

$$Mu = f(Re).$$

(2)

Анализ литературных источников показал, что наиболее близкий аналог труб с завальцованными ребрами — трубы с навитыми под натяжением L-образными ребрами (рис. 1, б) из алюминиевой ленты, которые имеют идентичную геометрию. Размеры ребер позволяют измерить среднюю температуру основания ребра t_{о. р} термопарами, заложенными в полку *L*-ребра [2]. По температурному напору $t_{o, p} - t_1$ вычисляют средний приведенный коэффициент теплоотдачн « без учета R_к пуч-ка-аналога. Опытные данные описывают критериальным уравнением

$$Nu' = f(Re), \tag{3}$$

где Nu' = $\frac{a'd_0}{\lambda}$, Nu = $\frac{ad_0}{\lambda}$ — числа Нуссельта в формулах (3) и (2); $Re = \frac{wd_0}{v}$ — число Рейнольдса;

w — скорость воздуха в узком сечении пучка,

*d*₀ — диаметр по основанию ребер, м.

Физические константы воздуха λ, ν принимают по его средней температуре t в пучке.

Аналитическую связь между α' , α и R_{κ} при Re = const и t = const или $t_1 = \text{const}$ устанавливают с помощью выражения

$$\frac{1}{\alpha\varphi} = \frac{1}{\alpha'\varphi} + R_{\kappa} \frac{d_0}{d_{\kappa}} + \frac{\delta_p}{\lambda_p} \frac{d_0}{d_{\kappa}} (M^2 \cdot K) / B_{T}; \qquad (4)$$

представляя (4) в безразмерной форме, получим:

$$\frac{1}{\mathrm{Nu}_{y}} = \frac{1}{\mathrm{Nu}_{y}'} + \frac{1}{\mathrm{Nu}_{\kappa}} \frac{d_{0}}{d_{H}} + \frac{\lambda}{\lambda_{p}} \frac{\delta_{p}}{d_{H}}, \qquad (5)$$

где Nu_y = Nu φ; Nu_y = Nu' φ – числа Нуссельта, отнесенные к площади поверхности трубы, вычисленной по d_0 ;

- d_н наружный диаметр несущей трубы;
- ϕ коэффициент оребрения трубы; $\lambda_{\rm p}$ коэффициент теплопроводности материала ребра;

 $\alpha_{\kappa} = 1/R_{\kappa}$ — коэффициент тепловой проводимости контакта, $BT/(M^2 \cdot K)$.

Применительно к геометрическим параметрам завальцованных ребер и температурным условиям их эксплуатации величина безразмерного комплекса $\frac{\lambda}{\lambda_p} \frac{b_p}{d_{II}}$ на два порядка меньше по сравнению с возможными значениями комплекса $\frac{1}{Nu_{\kappa}} \frac{d_0}{d_{\kappa}}$ и на два-три порядка меньше значений $\frac{1}{Nu_v}$ и $\frac{1}{Nu'_v}$. Поэтому при вычислениях R_{κ} можно пренебречь влиянием третьего члена в формулах (4), (5) и пользоваться выражением

$$\frac{1}{\mathrm{N}\mathfrak{u}_{\mathbf{y}}} \approx \frac{1}{\mathrm{N}\mathfrak{u}_{\mathbf{y}}'} + \frac{1}{\mathrm{N}\mathfrak{u}_{\mathbf{K}}} \frac{d_{\mathbf{0}}}{d_{\mathbf{0}}}.$$
 (6)

Точность определения R_{μ} изменится на относительную ошибку, не превышающую ± 0,6 %.

Следовательно, при известной геометрии оребрения и наличии критериальных уравнений для Nu' и Nu сравниваемых пучков нахождение R_{κ} не представляет затруднений.

Параметры оребрения труб

Таблица I

№ пуч- ка		Размер	ребер,	мм	1			
	d	h	u	Δ	h ₃	Ģ	Исходное уравнение	ис- точ- няк
I	56,44	15,72	2,53	0,325	0,3	21,41	Nu = 0,292 $\operatorname{Re}^{0,515}$	[1]
2	55,28	15,14	2,53	0,325	0,5	20,37	$Nu = 0,172 \text{ Re}^{0,585}$	[1]
3	55,74	15,37	2,53	0,325	0,7	20,27	$Nu = 0,233 \text{ Re}^{0,547}$	[1]
4	56,4	15,3	2,5	0,22	—	20,59	$Nu' = 0,218 \text{ Re}^{0,58}$	[2]

Прямое приложение метода осуществлено для определения $R_{\rm k}$ оребренных алюминиевой завальцованной лентой труб, теплоэродинамические характеристики шахматных пучков № 1—3 (табл. 1) из которых приведены в работе [1]. Шахматный пучок-аналог № 4 в табл. 1 состоял из труб с *L*-ребрами. Трубы в пучках размещены по вершинам равностороннего треугольника с поперечным шагом $S_1 = 59$ мм и среднеднагональным шагом $S'_2 = S_1$. Несущая труба в пучках № 1—4 выполнена из стали 10 с наружным диаметром $d_{\rm H} = 25$ мм.

По формулам (4), (5) и данным табл. 1 рассчитаны численные значения ТКС труб пучков № 1—3, которые приведены на рис. 2 для различных значений числа Re (Re = var) в зависимости от глубины завальцовки ребра.

Рис. 2. Графики для определения ТКС в зависимости от глубины завальцовки ребра: *I*, *II*, *III* пучки труб № 1—3 (по табл. 1); *IV*, *V*, *VI*, *VII* — пучки труб № 1—4 (по табл. 2)

В наших работах [3, 4, 7, 8] исследованы шахматные шестирядные пучки с шагом $S_1 = S'_2 = 59$ мм из труб (оребренных алюминиевой завальцованной лентой толщиной $\Delta = 0,3$ мм) одинаковых размеров (d = 57 мм; $d_{\rm H} = 25$ мм; h = 16 мм), но отличающихся шагом ребер и коэффициентом оребрения. Эти параметры были соответственно равны: u = 4,23; 3,63; 3,175; 2,53 мм, а $\varphi = 13,5$; 15,4; 17,7; 22. Опытные данные по теплоотдаче измерены с учетом $R_{\rm K}$ и обработаны в виде уравнения (2). Однако в известных публикациях для рассматриваемой партии труб 5. светой живиер № 2 не обнаружены пучки-аналоги, удовлетворяющие требованиям примененного метода определения ТКС. Поэтому значения R_{κ} для пучков труб № 1—3 приняты базовыми и метод трансформирован в следующем направлении.

Для труб-калориметров [3, 4, 7, 8] была определена с точностью ± 0,01 мм глубина завальцовки ребра (табл. 2).

Таблица 2

№ пуч- ка	ş	ћ ₃ , мм	$R_{\rm K} \cdot 10^4, \ ({\rm M}^2 \cdot {\rm K})/{\rm Br}$ $Re = 5\ 000 \ Re = 10\ 000 \ Re = 20\ 000$			-, Н/мм²	Полученные урав- нения вида (3)
1	13,5	0,35	3,39	2,62	2,05	1,55	$Nu' = 0,195 \text{ Re}^{0,61}$
2	15,4	0,27	3,70	3,05	2,60	0,51	$Nu' = 0,157 \text{ Re}^{0,61}$
3	17,7	0,32	3,44	2,80	2,24	1,27	$Nu' = 0,154 \text{ Re}^{0,61}$
4	22	0,30	3,50	2,90	2,40	0,92	$Nu' = 0,149 \text{ Re}^{0,61}$

Расчетные и опытные характеристики пучков из труб [3, 4, 7, 8]

Для труб № 1—3 (табл. 1) по данным рис. 2 для каждого Re = = const в логарифмических координатах строили зависимость $R_{\kappa} = f(h_3)$, а затем по замеренным h_3 пучков труб № 1—4 (табл. 2) определяли сопряженные им значения R_{κ} . Установленные таким образом числа R_{κ} приведены в табл. 2, а также ими дополнен рис. 2.

Увеличение глубины завальцовки вызывает снижение ТКС, которое достигает наименьшего значения в окрестности $h_3 = 0,5$ мм. Например, с ростом h_3 от 0,3 до 0,5 мм величина ТКС уменьшается в среднем в 1,1 раза при $\text{Re} = 5\,000$ и в 1,5 раза при $\text{Re} = 20\,000$. Но при $h_3 > 0,5$ мм наблюдается рост значений $R_{\rm K}$, что можно объяснить возникновением воздушных зазоров [1] по периметру завальцованной части ребра в угловых точках его соприкосновения с несущей трубой. Зазоры уменьшают фактическую площадь механического контакта. Это подтверждается прямыми измерениями усилия вырыва сектора ленты (рис. 3, б) для исследованных труб.

На каждой трубе-калориметре длиной 400 мм вырезали шесть секторов с углом 90° и с помощью динамометра (погрешность $\pm 2H$) измеряли усилие вырыва P ленты из канавки. Усредненные значения P, как среднеарифметические из измеренных, изображены на рис. 3, а для сопряженных им величин h_3 . Кривая $P = f(h_3)$ качественно повторяет ход кривой $R_{\kappa} = f(h_3)$ и результаты вычисленных значений R_{κ} хорошо коррелируются как по h_3 , так и P. Действительно, для $h_3 = 0.7$ мм усилие P снизилось в 1,4 раза по отношению к значению P для $h_3 = 0.5$ мм. Совместный анализ рис. 2 и 3 указывает на превалирующее

Рис. 3. Зависимость (a) усилия вырыва сектора ребра (б) от глубины завальцовки: 1— сектор ребра; 2 несущая труба; остальные обозначения те же, что на рис. 2 влияние глубины завальцовки в изменении R_{κ} по сравнению с усилием вырыва. Увеличение h_3 в 1,07 раза (трубы № 3, 4 в табл. 2) вызвало максимальное снижение ТКС на 7 %, несмотря на возрастание P в 1,53 раза. Усилие вырыва (завальцовки) ребра зависит от большого числа параметров и факторов: степени износа обжимных роликов, механических свойств материалов, шероховатости ленты, в учете непосредственного влияния которых на изменение P и R_{κ} нет необходимости.

Совместное влияние P и h_3 на R_{κ} компромиссно учитывают касательным напряжением τ , H/мм², вырыва в зоне завальцовки

$$\tau = P/f_{\rm r}.\tag{7}$$

Площадь поверхности геометрического контакта ребра с трубой

$$f_{\rm r} = \frac{\pi}{2} \left[d_{\rm H}^2 - (d_{\rm H} - 2h_{\rm s})^2 \right]. \tag{8}$$

Для труб № 1—3 (табл. 1) значения т равны 0,855; 2,44 и 1,25 Н/мм².

Введение параметра т позволило (рис. 4) с относительной погрешностью ± 9 % описать ТКС анализируемых труб уравнением

$$R_{\kappa} \cdot 10^4 = c\tau^{-n} (\mathrm{M}^2 \cdot \mathrm{K}) / \mathrm{BT}.$$
⁽⁹⁾

Рис. 4. Зависимость ТКС завальцованных ребер от напряжения вырыва; *I* — Re = 5 000; *II* — Re = 20 000; остальные обозначения те же, что на рис. 2

Показатели степени *п* для Re, равных 5 000; 10 000 и 20 000, принимают соответственно равными 0,13; 0,23 и 0,32. Постоянная *с* для указанных Re равна 3,46; 2,80 и 2,24.

Относительная квадратичная погрешность вычисления абсолютных значений R_{κ} разработанным методом не превышает ± 10.5 %.

Таким образом, для труб № 1—4, используя полученные значения R_{κ} , определены по (4) коэффициенты теплоотдачи α' , далее Nu' и получены критериальные уравнения теплообмена (табл. 2). Исключение R_{κ} из уравнений подобия привело к постоянному показателю степени, равному 0,61 при Re, что соответствует ребрам одинаковой высоты и толщины, а также косвенно характеризует корректность метода выделения R_{κ} из общего термического сопротивления приведенной теплоотдачи.

ЛИТЕРАТУРА

[1]. Исследование влияния геометрических и технологических параметров навитых завальцованных ребер на теплоотдачу и аэродинамическое сопротивление пучков труб/ В. Б. Кунтыш, А. Э. Пиир, М. А. Топоркова и др.// Энергетика.— 1980.— № 10.— С. 65—70. (Изв. высш. учеб. заведений). [2]. Исследование теплоаэродинамических характеристик пучков труб различных материальных исполнений и форм оребрения: Науч. отчет/ Арханг. лесотехн. ин-т; Руководитель В. Б. Кунтыш.— Инв. № Б911123.— Архангельск, 1980.— 78 с. [3]. Кунтыш В. Б., Федотова Л. М., Кузнецов Н. М. Влияние геометрии пучка оребренных труб на теплоотдачу и сопротивление// Холодильная техника.— 1981.— № 8.— С. 25—28. [4]. Кунтыш В. Б., Федотова Л. М., Кузнецов Н. М. Теплообмен и сопротивление оребренных труб пучков с 5* неравномерными шагами в аппаратах воздушного охлаждения// Энергетика.— 1982.— № 5.— С. 60—65. (Изв. высш. учеб. заведений). [5]. Прозорова Т. В., Сутырина Т. М. О влиянии теплового сопротивления контакта на теплотехнические характеристики аппаратов// Расчет и экспериментальное исследование холодильных и компрессорных машин: Темат. сб. тр. ВНИИхолодмаш.— М., 1982.— С. 134—141. [6]. Сасин В. И. К вопросу определения термического сопротивления контакта в ребристых отопительных приборах// Новое санитарно-техническое оборудование.— М.: НИИсантехника, 1978.— № 50.— С. 5—11. [7]. Федотова Л. М. Тепловые и аэродинами. ческие характеристики шахматных пучков оребренных труб аппаратов воздушного охлаждения// Рациональное использование и восстановление природных ресурсов на Европейском Севере: Тез. докл. к науч.-техн. конф. молодых ученых и специалистов 11—13 ноября 1980 г.— Архангельск: Арханг. лесотехн. ин-т, 1980.— С. 96. [8]. Федотова Л. М., Кунтыш В. Б., Кузнецов Н. М. Теплоотдача и сопротивления приков, оребренных навитой лентой, труб аппаратов воздушного охлаждения и солотова Л. М. Спелоотдача и сопротивления сопротивления и восстановление природных ресурсов на сразличным числом рядов// Энергетика.— 1980.— № 5.— С. 112—115. (Изв. высш. учеб. заведений). [9]. Gardner К. А., Сагпаvоs Т. С. Thermal-Contact Resistance in Finned Tubing// J. Heat Transfer.— 1960, November.— 82.— Р. 279—293.

Поступила 14 апреля 1986 г.

68