УЛК 630* 284

В.В. Петрик

Петрик Виталий Васильевич родился в 1952 г., окончил в 1976 г. Архангельский лесотехнический институт, кандидат сельскохозяйственных наук, доцент кафедры лесных культур и механизации лесохозяйственных работ Архангельского государственного технического университета. Имеет более 40 печатных работ в области прижизненного лесопользования.

КОСВЕННЫЕ ПРИЗНАКИ СМОЛОПРОДУКТИВНОСТИ СОСНЫ ОБЫКНОВЕННОЙ

Рассмотрена связь смолопродуктивности с некоторыми признаками ствола и кроны, указывающими на способность деревьев выделять живицу.

смолопродуктивность, сосна обыкновенная, отбор.

Исследования связи смолопродуктивности деревьев сосны с косвенными признаками, указывающими на способность выделять живицу, мы проводили на 36 пробных площадях, расположенных в различных подзонах тайги. Количество здоровых деревьев на пробной площади составляло от 120 до 177 экземпляров, что обеспечивало необходимую в статистике достоверность и точность.

Смолопродуктивность деревьев определяли по общепринятой методике (ОСТ 13-80-79). Измеряли диаметр и высоту дерева, высоту прикрепления первой живой ветви, протяженность и диаметр кроны, другие показатели, вычисляли объем кроны. На части пробных площадей брали керны древесины, измеряли прирост по диаметру на высоте груди за пять и десять лет, подсчитывали число годичных слоев в 1 см радиуса, число смоляных ходов на 1 см годичного слоя и густоту вертикальных смоляных ходов на 1 см² поперечного сечения; изучали хвою и некоторые другие элементы.

Для установления тесноты связи между выходом живицы с карродециметрподновки (КДП) и каждым изучаемым признаком определяли коэффициент корреляции и корреляционное отношение. Результаты исследований показывают, что теснота связи может существенно изменяться даже в пределах одного типа леса, что связано с генетической неоднородностью сосны обыкновенной в пределах одной и той же популяции [1, 3, 7]. Это обстоятельство затрудняет поиск надежных критериев смолопродуктивности.

Результаты исследований сведены в таблицу.

Связь смолопродуктивности сосны с косвенными признаками

		F		
Полого		Тип леса		Без учета
Признак	черничный	брусничный	мохово-лишай- никовый	типа
Диаметр дерева	0,36/0,36	0,37/0,39	0,46/0,52	леса 0,40/0,42
Высота дерева	0,36/0,36	0,37/0,39	0,32/0,46	0,30/0,35
	0,13/0,20	0,32/0,34	0,32/0,40	0,30/0,33
Высота прикрепления первой живой ветви	0.25/0.22	0.21/0.20	0.26/0.22	0.22/0.20
	0,25/0,22	0,21/0,30	0,26/0,33	0,22/0,30
Протяженность кроны	0,31/0,40	0,28/0,40	0,15/0,30	0,24/0,35
Диаметр кроны	0,33/0,37	0,30/0,41	0,28/0,39	0,30/0,37
Объем кроны	0,38/0,52	0,28/0,45	0,29/0,42	0,29/0,43
Высота поднятия грубой				
коры	-	0,21/0,27	-	0,21/0,27
Густота смоляных ходов	0,37/0,32	0,47/0,51	0,35/0,36	0,35/0,41
Прирост по диаметру:				
за 5 лет	0,19/0,29	0,29/0,46	0,03/0,09	0,24/0,36
за 10 лет	0,07/0,20	0,19/0,31	0,09/0,20	0,11/0,25
Отношение диаметра				
дерева к его высоте	0,27/0,29	0,30/0,44	0,30/0,38	0,29/0,39
Число годичных слоев				
в 1 см радиуса	0,04/0,20	0,18/0,33	0,08/0,21	0,09/0,24
Число смоляных ходов				
на 1см годичного слоя	0,10/0,23	0,10/0,13	0,12/0,14	0,11/0,16
Масса 100 хвоинок	0,38/0,44	0,13/0,17	0,18/0,20	0,27/0,32
Длина хвои	0,28/0,37	0,12/0,20	0,32/0,18	0,18/0,20
Процент влаги в хвое	0,15/0,25	0,24/0,18	0,20/0,27	0,19/0,21
Толщина ветви	0,26/0,36	0,15/0,30	0,11/0,03	0,19/0,29
Длина ветви	0,21/0,35	0,14/0,27	0,29/0,32	0,20/0,32
Угол отхождения ветви	0,35/0,45	0,50/0,22	0,32/0,33	0,42/0,36
Продолжительность	,			, ,
жизни хвои	0,24/0,32	0,28/0,27	0,30/0,09	0,26/0,28
Плодоношение	0,22/0,40	0,08/0,16	0,07/0,03	0,13/0,24
	- , ,	1 -,	,	-,

Примечание. В числителе – коэффициент корреляции; в знаменателе – корреляционное отношение.

В ней представлены средние данные по пробным площадям в пределах черничного, брусничного и мохово-лишайникового типов леса, а также по всем пробным площадям — без учета типа леса. Средние арифметические показатели рассчитывали по средним для каждой пробной площади данным, вычисленным статистическим способом.

Теснота связи смолопродуктивности с рассмотренными признаками, как правило, слабая (коэффициент корреляции до 0,30) или умеренная (0,31 ... 0,50), редко значительная (0,51 ... 0,70) [2]. Умеренной связью характеризуется диаметр дерева, диаметр (ширина) кроны и ее объем во всех типах леса.

От диаметра дерева во многом зависит выход живицы на карроподновку и карру. Эта связь прямая, коэффициент корреляции (0,40) и корреля-

ционное отношение (0,42) близки по значению. Однако нередко деревья одного и того же диаметра, занимающие одинаковое положение в древостое, выделяют разное количество живицы, и, наоборот, часто встречаются деревья с одинаковой смолопродуктивностью, но значительно различающиеся по диаметру.

Такие различия исследователи объясняют тем, что ростовые процессы дерева не являются причиной его высокой или низкой смолопродуктивности [6, 8]. Характерной особенностью деревьев высокой смолопродуктивности они считают разреженность кроны. Поверхность световой хвои у таких деревьев больше, но общее количество хвои меньше, чем у сосен обычной смолопродуктивности.

Связь смолопродуктивности с диаметром кроны и ее объемом умеренная (корреляционное отношение соответственно 0,37 и 0,43). Насаждения из ширококронных деревьев, как правило, более смолопродуктивны, но размер кроны не является непосредственным и определяющим фактором. Приведенные связи характерны для всех типов леса. Связи смолопродуктивности с другими показателями зависят от типа леса.

В сосняке черничном зафиксирована умеренная связь с углом отхождения ветви, массой 100 хвоинок, толщиной и длиной ветвей (корреляционное отношение соответственно 0,45; 0,44; 0,36 и 0,35).

В зависимости от угла отхождения ветвей, их размеров и массы хвои образуется определенная форма кроны. Анализ показал, что в одном и том же древостое можно встретить все типы кроны среди как высокосмолопродуктивных, так и низкосмолопродуктивных деревьев. По-видимому, нельзя выделить высокосмолопродуктивные сосны по какому-либо определенному типу кроны.

Более четко выступает связь смолопродуктивности с углом отхождения ветвей (углом ветвления). В большинстве случаев у высокосмолопродуктивных деревьев этот угол острый. По данным Е.П. Проказина [4], решающее значение имеет качество хвои, а также специфическое состояние водного баланса, связанное с излишне большой транспирационной поверхностью густоохвоенных сосен.

В сосняке брусничном отмечена значительная теснота связи с густотой смоляных ходов (корреляционное отношение 0,51). Если предположить, что смолопродуктивность определяется прежде всего числом вскрытых смоляных ходов, то эта связь должна быть наиболее тесной. Во всех случаях у высокосмолопродуктивных сосен густота смоляных ходов в среднем большая, хотя в других типах леса эта связь умеренная. Полученные данные согласуются с результатами наших предыдущих исследований.

Влияние густоты смоляных ходов на 1 см 2 поперечного сечения древесины на выход живицы мы изучали также у 48 пар модельных деревьев, одинаковых по размеру, но различающихся по смолопродуктивности в 2,5–3,5 раза. Выявлена существенная разница в густоте смоляных ходов: деревья с выходом живицы 12,8 г на КДП имеют 67 смоляных ходов, с выходом 4,5 г – 55. При отборе высокосмолопродуктивных деревьев можно

использовать показатель густоты смоляных ходов 60 шт./см² и более [5], но применение его в практических целях весьма затруднительно.

Рассматривая тесноту связи смолопродуктивности с косвенными признаками дерева, необходимо отметить, что при отборе деревьев можно учитывать диаметр дерева, а также степень развития кроны (ее диаметр и объем). Однако необходимо помнить, что слабая связь показателей, как правило, не позволяет судить о смолопродуктивности дерева с достаточной степенью надежности. Повышению смолопродуктивности надо способствовать, улучшая состояние деревьев и древостоев.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Высоцкий А.А.* Биологические особенности деревьев сосны обыкновенной высокой и низкой смолопродуктивности // Генетико-селекционные основы улучшения лесов: Сб. науч. тр. Воронеж: НИИЛГиС, 1999. С. 106–129.
- 2. Дворецкий М.Л. Пособие по вариационной статистике. М.: Лесн. промсть, 1971.-104 с.
- 3. *Правдин Л.Ф*. Сосна обыкновенная. Изменчивость, внутривидовая систематика и селекция. М.: Наука, 1964. 191 с.
- 4. *Проказин Е.П.* Селекция смолопродуктивных форм сосны обыкновенной // Опыт достижения по селекции лесных пород. М.: Изд-во Минсельхоза СССР, 1959. Вып. 38. С. 125–186.
- 5. *Суханов В.И.*, *Чибисов Г.А.*, *Петрик В.В.* Повышение смолопродуктивности сосновых насаждений рубками ухода // Интенсификация подсочки и использования вторичной продукции леса. Архангельск, 1986. С. 60–67.
- 6. Чудный А.В. О некоторых признаках и свойствах сосен высокой и низкой смолопродуктивности в Кировской области // Селекция и семеноводство древесных пород. М., 1965. С. 97–111.
- 7. 4удный A.В. Исследования полиморфизма сосны обыкновенной: Автореф. дис. . . . д-ра биол. наук. Л.: ЛЛТА, 1982. 32 с.
- 8. *Шульгин В.А.* Отбор и разведение сосен высокой смолопродуктивности. М.: Лесн. пром-сть, 1973. 87 с.

Архангельский государственный технический университет

Поступила 20.05.02

V.V. Petrik

Indirect Features of Resin-efficiency of Scots Pine

The link of resin-efficiency with some characteristics of trunk and crown is analyzed, speaking about the trees' ability to produce galipot.