1991

УДК 676.084.2:678.04

ПУТИ ИСПОЛЬЗОВАНИЯ ЛИГНОСУЛЬФОНАТОВ В ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ЭЛАСТОМЕРОВ

А. Я. БОРЗЕНКОВА, Р. И. ДАШЕВСКАЯ, Г. К. ТРЕННИКОВА, И. В. ЕЛЬКАНОВИЧ

Белорусский технологический институт

В современной технологии переработки эластомеров широко применяют различные поверхностно-активные вещества (ПАВ) по одному из двух направлений: как антиадгезионные агенты для каучуков и невулканизованных резиновых смесей, предупреждающие их самослипание и прилипание к другим материалам за счет образования поверхностного адсорбционного слоя [2, 8], и как добавки, улучшающие перерабатываемость и технические свойства эластомерных композиций [6]. Однако характерный для последних лет острый дефицит и недостаточная, с точки зрения прогрессивного производства, эффективность многих синтетических ПАВ обусловливают актуальность их замены на более доступные продукты, по своим свойствам соответствующие требованиям отрасли.

Доступность и поверхностная активность лигносульфонатов (ЛСТ) послужили основанием для оценки их применимости в технологических процессах изготовления и переработки резиновых смесей. Ранее была установлена [4, 9] и подтверждена в производственных условиях перспективность использования ЛСТ с целью частичной замены вторичных алкилсульфатов натрия C_{8-16} (товарная форма — моющие вещества «Прогресс», «Типол»), представляющих собой основной компонент антиадгезивов для шинных резиновых смесей. В то же время механизм совместного действия ЛСТ и алкилсульфатов до настоящего времени не выяснен, не выявлены свойства комбинаций ЛСТ с другими ПАВ, совершенно не исследована возможность модификации с помощью ЛСТ свойств резиновых смесей и вулканизаторов.

В данной работе проведено сопоставление антиадгезионного действия ЛСТ, алкилсульфатов и бинарных комбинаций этих ПАВ с параметрами, характеризующими адсорбцию из соответствующих водных растворов, оценена целесообразность сочетания ЛСТ с алкил- и алкилбензолсульфонатами, использующимися для предупреждения слипания резиновых смесей [7], а также изучено влияние добавок твердых ЛСТ на различные показатели физико-механических свойств элатомерных композиций.

Антиадгезионные свойства исследуемых ПАВ оценивали по сопротивлению расслаиванию σ_p резиновой смеси на основе цис-1,4-полиизопрена СКИ-3. Образцы в виде полос предварительно обрабатывали растворами ПАВ, высушивали на воздухе, дублировали и термостатировали под нагрузкой. Об адсорбции на границе резиновая смесь — раствор судили по значениям косинуса краевого угла смачивания $\cos \Theta$, на границе раствор — воздух заключали по значениям поверхностного натяжения жидкости $\sigma_{\mathbf{ж}, \Gamma}$. Методики определения σ_p и $\cos \Theta$ соответствовали опубликованным ранее [8], $\sigma_{\mathbf{ж}, \Gamma}$ измеряли по методу Ребиндера [10].

Изучение ЛСТ в качестве ингредиента эластомерных композиций проводили в рецептуре двух резиновых смесей: № 1 — модельной на основе натурального каучука; № 2 — протекторной на основе бутадиен-стирольного сополимера СКС-30 АРКМ-15. Показатели физико-механических свойств резиновых смесей и вулканизаторов определяли с помощью стандартных методов.

На рис. 1 представлена зависимость ор от массовой доли (ω_1) и алкилсульфатов (ω_2) в растворах, содержащих одно из этих ПАВ или их комбинации. Кривая $\sigma_{\rm p} = f(\omega_{\rm l})$ не приведена в связи с тем, что растворы ЛСТ не проявляют сколько-нибудь заметного адгезионного, действия; граница между контактирующими поверхностями образцов, обработанных этими растворами, в процессе подготовки испытаниям полностью исчезает, при их разделении происходит отслаивание по площади контакта, а разрыв резиновой смеси в массе. Поэтому значения $\sigma_{\rm p}$ в данном случае характеризуют не аутогезию, а когезионные свойства материала. Вместе с тем можно видеть, ЛСТ образуют с алкилсульфатами синергические бинарные комбинации, обеспечивающие высокий уровень защиты резиновой смеси от слипания. Варьирование соотношений компонентов этих комбинаций в пределах постоянной суммарной концентрации позволяет установить, что наилучшие результаты достигаются в присутствии 1,5...2,0 % алкилсульфатов. Такие системы по эффективности примерно в два раза превосходят растворы алкилсульфатов с массовой долей 4...5 %, соответствующей рецептурам производственных антиадгезивов [8].

Ранее показано [7], что эффективность анионных ПАВ в качестве антиадгезионных агентов коррелирует с их адсорбционной активностью на межфазных границах резиновая смесь — раствор и раствор — воздух. Сопоставление данных (рис. 1 и 2) свидетельствует о справедливости этой закономерности для тестируемых систем. Так, растворы ЛСТ, не проявляющие антиадгезионного действия, характеризуются значительно худшим, по сравнению с растворами алкилсульфатов, смачиванием резиновой смеси и повышенным поверхностным натяжением. Эффективные комбинации ЛСТ и алкилсульфатов обладают хорошими адсорбционными свойствами, при этом минимуму на концентрационной зависимости $\sigma_{\rm p}$ соответствуют максимальные значения $\cos \Theta$ и минимальные — о ... Однако обращает на себя внимание, что при значительном снижении 👨 различие в адсорбционной способности бинарных комбинаций и алкилсульфатов невелико. Эта особенность подтверждает высказанное в работах [4, 9] предположение, что основной причиной синергического усиления антиадгезионного эффекта в комбинациях ЛСТ — алкилсульфаты является не повышение интенсивности адсорбции

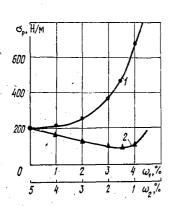


Рис. 1. Антиадгезионное действие водных растворов алкилсульфатов (1) и их 5инарных композиций с ЛСТ (2)

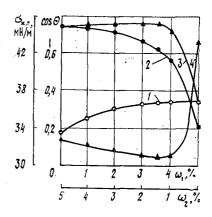


Рис. 2. Адсорбционные свойства ЛСТ (кривая 1), алкилсульфатов (кривая 2) и их бинарных композиций (кривые 3, 4): 1, 2, 3—смачивающая способность, 4—поверхностное натяжение

на поверхности резиновой смеси, а изменение принципа формирования и строения адсорбционного слоя.

Можно полагать, что в соответствии с закономерностями, проявляющимися при совместном применении низко- и высокомолекулярных ПАВ [10], низкомолекулярные алкилсульфаты адсорбируются из раствора, сильно снижая поверхностное натяжение резиновой смеси и создавая тем самым условия для адсорбции ЛСТ, которые, подобно другим высокомолекулярным ПАВ [1], формируют прочный структурированный слой повышенной толщины. Такой механизм согласуется с современными представлениями о природе истинного синергизма в смесях ПАВ [10], согласно которым взаимодействие компонентов системы должно приводить к структурам, качественно отличающимся от образуемых каждым из них по отдельности.

В отличие от алкилсульфатов, ПАВ группы органосульфонатов не дают с ЛСТ комбинаций, характеризующихся усилением антиадгезионной защиты резиновых смесей и адсорбции на межфазных границах (табл. 1). В евязи с недостаточной изученностью явления синергизма для систем на основе ПАВ интерпретация этого факта затруднена, однако можно предположить, что в случае одинакового строения полярной гидрофильной части молекул ЛСТ и второго ПАВ условия для реализации обсуждавшегося выше механизма не выполняются.

Таблица 1 Свойства растворов органосульфонатов и их комбинаций с ЛСТ

	5					
		лст	^о р' Н/м	cos 0.	ж. г мН/м	
1 3 4 5 1 3 4 —		4 2 1 - 4 2 1 1	512 236 182 180 506 248 186 375 140 140 145 390 150	0,54 0,71 0,78 0,79 0,53 0,73 0,76 0,75 0,83 0,84 0,81 0,56 0,80	30,9 30,8 — 30,6 — 29,7 29,5 — 29,6	

Возможность повышения антиадгезионного действия и сокращения дозировок алкилсульфатов путем их частичной замены на ЛСТ определяла целесообразность разработки практических рецептур антиадгезивов, включающих, помимо указанных компонентов, пеногасящие и модифицирующие добавки. Использование этих антиадгезивов в массовом производстве шин, начатое в 1987 г., обеспечивает стабильную работу оборудования, создание значительных технологических запасов гранулированных и листованных резиновых смесей, отсутствие отрицательного влияния на качество готовой продукции, экономию дефицитного поверхностно-активного продукта.

Интересные данные получены при исследовании действия твердых ЛСТ в составе эластомерных композиций. Результаты комплекса испытаний позволяют установить, что добавки ЛСТ не изменяют пластоэластические характеристики резиновых смесей и такие свойства резин как прочность, эластичность, твердость, сопротивление раздиру, стойкость к тепловому старению, но улучшают два различных по физическому смыслу показателя— стойкость смесей к преждевременной вулканизации и выносливость вулканизатов при многократных динамических деформациях.

Из табл. 2 следует, что способность ЛСТ к замедлению преждевременной вулканизации проявляется, начиная с дозировки 1 часть на 100 частей каучука; применение ЛСТ в количестве 3 части и выше нецелесообразно в связи с уменьшением скорости вулканизации, сказывающимся в возрастании оптимальной продолжительности этого процесса. По эффективности ЛСТ не уступают такому известному ингибитору преждевременной вулканизации как фталевый ангидрид, но в отличие от этой высокоплавкой добавки, плохо распределяющейся в резиновых смесях [11], ЛСТ, обладающие относительно низкой температурой размягчения, без затруднений диспергируются в массе каучуков и не мигрируют на поверхность образцов в течение длительного времени. Факт замедления преждевременной вулканизации в присутствии ЛСТ согласуется с литературными сведениями [3] о применении с такой же целью их синтетических аналогов — солей алканбензолсульфокислот.

Таблица. 2 Влияние ЛСТ на свойства резиновых смесей и резин, приготовленных по рецептурам № 1 (числитель) и № 2 (знаменатель)

	Без добавки	С добавками					
Показатели		ЛСТ, части на 100 частей каучука (фтале-	
		0,5	1,0	2,0	3,0	вого* ангидри- да	
Время до начала подвулка- низации при 120 °C, мин Время достижения оптиму- ма вулканизации при 143 °C, мин	82 11 70 50	81 12 70 50	91 15 70 50	92 15 70 50	90 16 80 60	92 14 70 50	
Усталостная выносливость при многократном растяжении, тыс. циклов	184,2 32,8	204,5 36,4	225,0 48,7	225,0 61,2	225,0 70,4	181,1 38,3	

* Дозировка фталевого ангидрида (0,5 части на 100 частей) соответствует производственным рецептурам резиновых смесей и ограничена его плохим распределением в массе каучуков.

Существенное повышение динамической выносливости образцов с добавками ЛСТ имеет, по-видимому, те же причины, что и аналогичный эффект, наблюдавшийся для резин с гранулированным наполнителем, при получении которого связующим были ЛСТ [5]. Вследствие проявления поверхностной активности ЛСТ, во-первых, повышается степень межфазного взаимодействия в наполненной эластомерной системе за счет лучшего диспергирования наполнителя и других ингредиентов в полимерной матрице, во-вторых, облегчается и ускоряется ориентация макромолекул в направлении действия нагрузки и соответственно снижается скорость механохимической деструкции напряженных связей.

Таким образом, ЛСТ можно использовать при переработке эластомеров как компонент, повышающий эффективность и экономичность антиадгезионных составов, и как бифункциональный ингредиент резиновых смесей, улучшающий их технологичность и обеспечивающий воз-

растание динамических свойств вулканизаторов. Широкое внедрение полученных результатов в производственную практику способствовало бы совершенствованию технологии резиновой промышленности, достижению высокой работоспособности изделий, эксплуатирующихся в условиях многократных деформаций, сокращению расхода синтетического сырья, а также более полному вовлечению ЛСТ в народнохозяйственный оборот.

СПИСОК ЛИТЕРАТУРЫ

[1]. Абрамзон А. А. Поверхностно-активные вещества. Свойства и применение.—
Л.: Химия, 1975.— 248 с. [2]. Антиадгезивы на основы поверхностно-активных веществ
/ И. А. Осошник, Е. Е. Крутских, М. Ф. Чурилов и др. // Каучук и резина.— 1989.—
Вып. 9.— С. 35—44. [3]. Блох Г. А. Органические ускорители вулканизации каучуков.— Л.: Химия, 1972.— 560 с. [4]. Борзенкова А. Я., Дашевская Р. И.,
Третинникова Г. К. Использование отходов целлюлозно-бумажной промышленности для антиалтезионной обработки резиновых смесей.// Каучук и резина.— 1989.—
Вып. 2.— С. 29—30. [5]. Влияние добавок при грануляции технического углерода на
свойства наполненных резин / С. В. Орехов, Л. А. Ризаева, В. М. Гончаров и др. //
Каучук и резина.— 1983.— Вып. 10.— С. 19—22. [6]. Гришин Б. С., Ельшевская Е. А., Писаренко Т. И. Применение поверхностно-активных веществ для
улучшения перерабатываемости резиновых смесей.— М.: ЦНИИТЭнефтехим, 1987.—
55 с. [7]. Исследование эффективности анионных ПАВ при предохранении резиновых
смесей от слипания / А. Я. Борзенкова, Е. И. Щербина, Р. И. Дашевская и др. //
Каучук и резина.— 1988.— Вып. 5.— С. 28—29. [8]. Некоторые аспекты антиадтезионного действия водных растворов ПАВ «Прогресс» / А. Я. Борзенкова, Р. И. Дашевская, Г. К. Третинникова и др. // Каучук и резина.— 1986.— Вып. 8.— С. 26—29. [9].
Новое направление использования лигносульфонатов и сульфатного мыла / Р. И. Дашевская, А. Я. Борзенкова, Г. К. Третинникова и др. // Пути повышения эффективности целлюлозно-бумажной промышленности: Сб. докл. Всесоюз. науч.-техн. конф.—
Коряжма, 1988.— С. 94—98. [10]. Поверхностные явления и поверхностно-активные вешества. Справочник / Под ред. А. А. Абрамзона и Е. Д. Щукина.— Л.: Химия, 1984.—
392 с. [11]. Федюкин Д. П., Махлис Ф. А. Технические и технологические
свойства резин.— М.: Химия, 1982.— 240 с.

Поступила 14 августа 1990 г.

УДК 630*864.66.081

ОБ АДСОРБЦИОННОЙ СУШКЕ ГИДРОЛИЗНОГО ЛИГНИНА В БАРАБАННОЙ СУШИЛКЕ

Б. Д. ЛЕВИН

Сибирский технологический институт

Настоящая работа является продолжением исследований сушки гидролизного лигнина сорбирующими телами [1].

Эксперименты проводили в аппарате барабанного типа, подачу материала (в среднем начальная относительная влажность составляла 63,2 %) и зерен поглотителя (силикагель марки КСМГ ГОСТ 3956—76) осуществляли через секторный и ленточный питатели. Барабан оснащался подъемно-лопастной насадкой. Высота каждой из 4-х лопастей равна 0,1 диаметра аппарата.

Опыты* осуществляли по плану $\Pi\Phi \ni -2^3$ [2]. В качестве независимых переменных использовали средний диаметр гранул силикагеля X_1 (диапазон изменения $3\dots 5$ мм), массовый расход влажного лигнина X_2 (1,1 \cdot 10 $^{-3}\dots 2$,2 \cdot 10 $^{-3}$ кг/с) и диаметр сушильного барабана X_3 (100 \cdot 150 мм). Выходными факторами были выбраны Y_1, Y_2, Y_3, Y_4 влажности гидролизного лигнина в сечении l/l_6 , равном соответственно 0,25; 0,50; 0,75; 1,00 % (l — расстояние от входа в барабан до точки отбора пробы, мм; l_6 — длина барабана, мм; Y_4 — конечная влажность

^{*} В работе участвовала Т. И. Чеканова.