$$Q_2 = \frac{1}{\mu} \left( \frac{\partial R}{\partial x} + \frac{S}{xh} - \sigma_{\text{m. r}} \frac{\partial^3 h}{\partial x^3} \right) \left( h \hat{\sigma}^2 - \frac{\delta^3}{3} + h^2 \delta \right) + \frac{\tau_0}{\mu} \left( \delta h - \frac{\delta^2}{2} \right) - U_\Pi h. \quad (14)$$

Аналогичные выражения получим и для увлекаемого ЛКМ

$$Q_1 = \frac{1}{\mu} \left( \frac{\partial R}{\partial x} + \frac{\sigma_{\text{H. r}}}{xh} \right) \left( h \delta^2 - \frac{\delta^3}{3} + h^2 \delta \right) + \frac{\tau_0}{\mu} \left( \delta h - \frac{\sigma^2}{2} \right) + U_{\Pi} h. \tag{15}$$

Полученные соотношения представляют математическую модель формирования жидкого адгезированного слоя ЛКМ на движущуюся подложку и могут быть использованы для управления и оптимизации данного технологического процесса.

УДК 621.643.03: 620.17

## О ПРИЧИНАХ РАЗРУШЕНИЯ СВАРНЫХ ШВОВ КОЛЛЕКТОРА ПАРОПЕРЕГРЕВАТЕЛЯ КОТЛА

Ю. К. ОПЯКИН. В. М. АЛЕКСАНДРОВ

Архангельский лесотехнический институт

Комплексное использование древесины сопровождается крупными затратами тепловой и электрической энергии. Улучшение качества электроснабжения— важная задача, решение которой в значительной степени зависит от безаварийной работы энергетического оборудования.

Исследование причин разрушений отдельных узлов и деталей оборудования спо-

собствует решению этого вопроса. В частности, на одной из ТЭЦ на котлах ТМ-84Б были обнаружены трещины в сварных швах приварки пароперепускных труб диаметром  $133 \times 13$  мм к коллекторам конвективного пароперегревателя диаметром  $219 \times 32$  мм, изготовленных из стали 12X1МФ. Қак показал макроскопический анализ, трещины глубоко уходят в тело коллектора. Максимальная протяженность трещин 150 мм при глубине до 14 мм.

Характер развития трещин и результаты выборки дефектов в металле одного из коллекторов в местах приварки штуцеров представлены на рис. 1. Твердость металла шва находится на уровне 160 . . . 190 НВ, а твердость основного металла коллектора — 135...137 НВ (рис. 2 табл. 1).

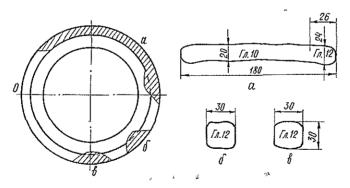



Рис. 1. Выборка металла сварного шва штуцера коллектора

Магистральные трещины развиваются снаружи и по мере распространения их вглубь рельеф излома становится более грубым.

Микроскопический анализ показал, что от магистральной трещины вдоль границ зерен расходятся множество микротрещин и микроразрывов аналогичного характера, заполненных окислами.

В зависимости от конфигурации труб и их ориентации в пространстве трещины расположены как с передней, так и с задней сторон коллекторов. Для количественных оценок напряжений выполнены расчеты напряженного состояния, перемещений отдельных сечений в результате температурных расширений труб и нагрузок на сварные швы в месте приварки штуцера к коллектору конвективного пароперегревателя по программе АСТРА для ЭВМ ЕС.

В программе полностью реализованы требования РТМ 24.038.08—72 по расчету трубопроводов энергетических установок на прочность.

Рис. 2. Срез участка сварного шва в районе трещины: арабскими цифрами обозначены точки замера твердости; римскими — сечения для микроскопического анализа металла

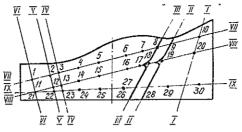



Таблица 1

Результаты испытаний на твердость сварного шва коллектора конвективного пароперегревателя (материал 12X1МФ)

| Точ-<br>ки за-<br>мера<br>твер-<br>дости  | Размер, мм                                                                                                                                                                                                                                               | нв                                                          | Точ-<br>ки за-<br>мера<br>твер-<br>дости                 | Размер, мм                                                                                                                                                                                                                                               | нв                                                          | Точ-<br>ки за-<br>мера<br>твер-<br>дости                 | Размер, мм                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | нв                                                          |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | $\begin{array}{c} 133 \times 12 \\ 219 \times 26 \end{array}$ | 147<br>139<br>159<br>185<br>176<br>185<br>185<br>172<br>133 | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | $\begin{array}{c} 219 \times 26 \\ 219 \times 26 \end{array}$ | 144<br>144<br>190<br>185<br>169<br>172<br>169<br>153<br>141 | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | $\begin{array}{c} 219 \times 26 \\ 219 $ | 144<br>147<br>185<br>185<br>185<br>185<br>180<br>147<br>137 |

Таблица 2

Результаты расчета пароперепускной трубы на совместное действие всех нагружающих факторов для рабочего состояния

| Но-           | Эквивалентные напряжения <sup>с</sup> э,<br>МПа |                             |  |  |  |  |
|---------------|-------------------------------------------------|-----------------------------|--|--|--|--|
| сече-<br>ния  | без учета овальности                            | с учетом<br>оваль-<br>ности |  |  |  |  |
| 0             | 140,8<br>84,6                                   |                             |  |  |  |  |
| $\frac{2}{3}$ | 98,5/76,6<br>124.6                              | 123,9                       |  |  |  |  |
| 4<br>5<br>6   | 164,3/100,8<br>77,2                             | 107,1                       |  |  |  |  |
| 6<br>7        | 132,8/123,7<br>165,4                            | 168,6                       |  |  |  |  |

Примечание. В числителе указаны напряжения в среднем сечении гиба, в знаменателе—в концевом;  $\mathfrak{c}_{\mathrm{лоп}}^9=109,5$  МПа для прямых труб;  $\mathfrak{c}_{\mathrm{лоп}}^9=182,5$  МПа для гибов; расчетные эквивалентные напряжения в сечениях 0,7— соединение пароперепускной трубы с коллектором— превышают допустимые.

Анализ результатов расчетов на совместное действие всех нагружающих факторов для рабочего состояния (внутрениее давление среды, весовая нагрузка, температурные расширения) выявил зоны повышенных на. пряжений в начальных и конечных сечениях всех труб в месте приварки штуцера к коллектору конвективного пароперегревателя (табл. 2). Приведенные данные свидетельствуют о том, что одна из причин разрушений — высокий уровень компенсационных напряжений (максимальные эквивалентные напряжения 165,4 МПа без учета овальности и 168,6 МПа с учетом овальности), обусловленный отсутствием свободы перемещений коллекторов при температурных расширениях труб и концентрации напряжений в местах приварки штуцера к коллек-

Кроме того, по нашему мнению, дополнительный фактор в развитии зародившихся трещин — коррозионная среда. Влияние коррозионной среды под напряжением способствует слиянию микронадрывов и микротрещин, которые объединяются и приводят к образованию магистральных трещин.

Эффект адсорбционного понижения прочности металла шва обусловлен прежде всего тем, что коррозионное влияние среды понижает поверхностную энергию металла и способствует зарождению пластических сдвигов.

В результате проведенного исследования установлено, что причина разрушения сварных швов конвективного пароперегревателя котла ТМ-84Б — повышенные напряжения компенсации температурных расширений пароперепускных труб под влиянием коррозионной среды.