МЕХАНИЧЕСКАЯ ОБРАБОТКА ДРЕВЕСИНЫ И ДРЕВЕСИНОВЕДЕНИЕ

УДК 674.048

Ю.А. ВАРФОЛОМЕЕВ, Е.Г. КОСТИНА ЦНИИМОД

Варфоломеев Юрий Александрович родился в 1953 г., окончил в 1975 г. Архангельский лесотехнический институт, доктор технических наук, заведующий лабораторией защиты древесины Центрального научноисследовательского института механической обработки древесины. Имеет около 200 научных трудов в области повышения эксплуатационной надежности деревянных конструкций и защитной обработки древесины экологически безопасными методами.

Костина Елена Геннадьевна родилась в 1969 г., окончила в 1991 г. Казанский государственный университет, кандидат биологических наук. Имеет 3 печатных труда в области экологических исследований влияния на растения антисептиков для древесины.

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН РАСТЕНИЙ ПРИ ДЕЙСТВИИ АНТИСЕПТИКОВ ДЛЯ ДРЕВЕСИНЫ

На примере проростков пшеницы экспериментально изучено действие бесхлорфенольных водорастворимых антисептиков K-12, ЭОК и катана на энергетический обмен растительных тканей, определяющий процессы жизнедеятельности растений.

By an example of wheat germs the effect of chlorophenolless water-soluble preservatives K-12, EOK and katan on plant tissues' energy exchange determining vital activity processes of plants has been experimentally studied.

В настоящей работе рассмотрено действие бесхлорфенольных антисептиков К-12, ЭОК и катана на энергетический обмен растений.

Важнейшими показателями энергетического обмена являются дыхание и тепловыделение. Дыхание — это процесс, в ходе которого поставляется энергия E, необходимая для деления, роста, размножения клеток и различных синтезов. Теплота Q, выделяемая живыми тканями в окружающую среду, имеет различное происхождение. Рассматривают [1] «первичную» и «вторичную» теплоту. Первичная теплота возникает за счет рассеивания энергии непосредственно в ходе окислительных реакций. Большая часть освобожденной энергии сразу не рассеивается, а трансформируется в энергию макроэргических связей и лишь после этого превращается во вторичную теплоту.

Эффективность дыхания растений определяют по способности данного процесса компенсировать энергетические потери организма, суммарным выражением которых является теплоотдача. Очевидно, чем в большей степени количество поставляемой дыханием энергии превышает теплоотдачу (или чем меньше соотношение Q/E), тем большим избытком свободной энергии располагает живая система для проведения идущих в ней эндотермических процессов.

Основными токсическими ингредиентами антисептика K-12 являются соединения фтора, ЭОК — щелочные соли карбоновых и органических кислот, катана — соединения четвертичного аммония.

В качестве объекта исследования использовали отсеченные корни шестидневных проростков пшеницы, выращенных на дистиллированной воде.

Выделение теплоты фиксировали с помощью дифференциального микрокалориметра LKB-2277 «Bioactivity Monitor» с высокой разрешающей способностью.

Навеску отсеченных корней массой (30±0,5) мг помещали в стеклянные измерительные ампулы вместимостью 3 см³, где находилось 0,6 см³ жидкости. (В контрольном опыте – это дистиллированная вода; в остальных – катан или К-12 концентрацией 0,001 %; ЭОК – 0,01 %.) Ампулы герметично опечатывали металлической крышкой с закрепленным на ней подвесом и помещали в калориметр. В положении термостатирования ампулы выдерживали 10...15 мин, после чего их опускали в измерительное положение и включали режим регистрирования. (За начало отсчета принимали максимальное положение пера самописца.)

Количество выделяемой теплоты находили по следующей формуле:

$$Q = \frac{3600 \cdot 0,239 \, l \, n}{10^6 \, m} \, ,$$

где Q – выделяемая теплота, кал/(ч · г сырой массы);

0,239 - коэффициент для перевода ватт в калории;

l – отклонение от базовой линии, мм;

n – константа калибровки самописца, мВт;

m – навеска растительного материала, г.

На основе балансового уравнения

$$C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O + 674$$
 ккал

общее количество освобождаемой при дыхании энергии E вычисляли по формуле

$$E = KV$$
,

где K – калорический коэффициент, характеризующий количество энергии, выделяющейся на объем V поглощенного при дыхании растений кислорода.

Проведение вычислений на основе балансового уравнения возможно при условии, что дыхательный коэффициент близок к единице. Только в этом случае можно с достоверностью полагать, что субстратом дыхания служат именно сахара, подвергающиеся полному окислению. При окислении сахаров K = 5,12 кал/мкл. Объем поглощенного кислорода регистрировали манометрическим методом в аппарате Варбурга [2]. Результаты экспериментальных исследований представлены в таблице.

Показатели энергетического обмена растений в процессе дыхания при воздействии на них антисептиков для древесины (числитель) и дистиллированной воды (знаменатель)

	Концентрация	Продолжи-	Энергия,	Теплота,	Соотно-
Антисептик	антисептика,	тельность	кал/(ч · г)	кал/(ч - г)	шение
	%	воздействия, ч			Q/E
Катан	0,001	1	2,5/3,5	1,2/2,4	0,47/0,68
		2	2,8/4,3	1,2/2,5	0,44/0,57
		3	3,5/4,6	1,4/2,8	0,41/0,61
		4	2,5/3,1	1,8/3,3	0,73/1,09
		5	3,2/3,1	2,1/3,6	0,65/1,17
ЭОК	0,010	1	2,8/3,8	2,6/2,3	0,92/0,62
		2	4,1/4,0	2,5/2,3	0,62/0,56
		3	4,6/3,3	2,6/2,5	0,58/0,76
7.0		4	4,1/2,8	2,7/2,9	0,66/1,04
		5	2,1/2,1	2,5/3,5	1,15/1,66
K-12	0,001	1	1,5/3,6	1,8/2,6	1,26/0,72
		2	2,8/4,7	1,8/2,8	0,68/0,60
		3	2,4/4,6	1,9/3,1	0,78/0,66
		4	3,2/3,5	2,2/3,6	0,63/1,02
		5	2,9/3,0	2,9/3,8	1,03/1,26

Как видно из таблицы, при действии антисептика катан термогенез значительно снижается по сравнению с контрольным опытом (данные в знаменателе). Это связано с тем, что катан может оказывать двойной эффект: ингибирование первого сегмента дыхательной цепи и блокирование выхода из клеток ионов калия. Блокирование выхода ионов калия из клеток (снижение проводимости плазмалеммы для этих ионов) является одной из причин снижения соотношения Q/E.

Под влиянием антисептика ЭОК термогенез в корнях усиливается. При этом в первые 2 ч инкубации корней происходит увеличение соотношения Q/Е. Можно предположить, что в этот период под его влиянием возрастает проницаемость плазмалеммы для протонов и калия, переносчиком которых являются остатки жирных кислот, входящих в состав ЭОК. Ранее при выявлении причин стимуляции дыхания ЭОК было показано, что эта стимуляция опосредуется активацией фермента аденозинтрифосфотазы, работа которой сопровождается выделением теплоты и, следовательно, возрастанием соотношения Q/E. Через 4 ч инкубации корней в растворе антисентика ЭОК потребление кислорода и термогенез приближаются к значениям, полученным в контрольных опытах, что свидетельствует о снижении энергетических затрат на транспорт ионов калия и протонов. Можно полагать, что за этот период времени происходит компенсация потерь клетками ионов калия: концентрация ионов калия в среде инкубации контрольных опытов составила 0.33 мкэкв/г, а в остальных -0.27 мкэкв/г. Одновременно имело место снижение пассивного поступления протонов в клетку, поскольку величина рН среды инкубации снизилась с 6,9 до 5,8. Подтверждением снижения энергетических затрат на транспорт ионов является уменьшение соотношения О/Е по сравнению с контролем.

При действии антисептика K-12 на корневые клетки наблюдается корреляция между снижением интенсивности дыхания и термогенезом по сравнению с контрольными опытами. Влияние K-12 направлено в основном на гликолитическую систему, что обусловлено наличием ионов фтора. В литературе практически нет данных о влиянии специфических ингибиторов дыхания на термогенез. Можно допустить, что ингибирование энергетического обмена в течение 2...4 ч будет сопровождаться именно снижением термогенеза, так как последний в значительной степени определяется активностью окислительных реакций. При более длительной (8...12 ч) инкубации корней в растворе K-12 могут включаться альтернативные пути окисления глюкозы, жирных кислот и других субстрактов. При этом вполне возможно не подавление, а усиление термогенеза. Действительно, в наших экспериментах термогенез корневых клеток через 8...12 ч резко усиливается (см. рисунок).

Таким образом, уровень термогенеза, а также соотношение *Q/E* определяются спецификой действия конкретного вида антисептика. Непосредственное действие катана и K-12 на энергетический аппарат растительных клеток в начальный период времени сопровождается ингибированием термогенеза. Антисептик ЭОК модифицирует мембранную

Термогенез корней проростков пшеницы при действии дистиллированной воды (1) и водного раствора K-12 концентрацией 0,001 % (2)

проницаемость, при этом обнаруживается возрастание термогенеза корневых клеток. В большинстве опытов интенсивность термогенеза коррелирует с интенсивностью потребления кислорода.

На основании полученных результатов можно сделать вывод о том, что бесхлорфенольные антисептики катан и K-12 (концентрация 0,001 %), а также ЭОК (0,01 %) оказывают влияние на растения только в первые часы воздействия. При длительном контакте с ними включаются защитные механизмы, направленные на детоксикацию антисептиков в клетках растений. Следовательно, рассмотренные бесхлорфенольные антисептики не оказывают на растения необратимого разрушающего действия.

СПИСОК ЛИТЕРАТУРЫ

[1]. Жолкевич В.Н. Энергетика дыхания высших растений в условиях водного дефицита. - М.: Наука, 1968. - 230 с. [2]. Семихатова О.А., Чулановская М.В. Манометрические методы изучения дыхания и фотосинтеза растений. - М.: Наука, 1965. - 168 с.

Поступила 6 марта 1995 г.