К ВОПРОСУ О ПРИМЕНЕНИИ ГАММА-ЛУЧЕЙ ДЛЯ АВТОМАТИЧЕСКОГО КОНТРОЛЯ РАЗМЕРОВ ПИЛОМАТЕРИАЛОВ

Б. К. ЛАКАТОШ

Доцент, кандидат технических наук

(Ростовский н/Д инженерно-строительный институт)

Для рационального использования и качественного хранения пиломатериалов большое значение имеют правильность и тщательность их сортировки по размерам. Так, рассортировка по размерам идущих в сушку пиломатериалов в значительной степени сказывается на производительности сушилок и на качестве сушки. Не меньшее значение имеет сортировка по размерам для последующего раскроя.

Обычно сортировка ведется вручную или с помощью довольно слож-

ных механических устройств.

Автором были проведены исследования возможностей применения гамма-лучей для автоматического контроля размеров пиломатериалов.

Этот метод контроля, основанный на определении количества поглощаемых гамма-квантов в зависимости от толщины материала, позволяет быстро, в условиях непрерывного потока и с достаточной степенью точности дистанционно осуществлять контрольные операции.

В основе рассматриваемого метода лежит так называемый закон ослабления пучка γ -лучей при прохождении его через вещество. Закон в общем виде описывается формулой:

$$J = J_0 e^{-\mu d},\tag{1}$$

где J — интенсивность γ -лучей, прошедших через слой материала толщиной d в c m;

 J_0 — интенсивность γ -лучей в той же точке при отсутствии материала;

 μ — коэффициент линейного ослабления пучка γ -лучей $c m^{-1}$.

Таким образом, измерив интенсивность проходящих γ -лучей J, зная интенсивность первичного пучка γ -лучей J_0 и μ , всегда можно найти толщину материала d.

Нами исследовались образцы различной толщины четырех древесных пород — дуба, березы, сосны и ели. При этом для каждой ступени

Значение коэффициента пересчета

(Tana iii	A626 100 to 1 − 2 200 T B %													
Породы	5	10	15	20	30	40	50°	60	70	80	90	100	110	120
Дуб	0,95	0,97	1,0	1,03	1,14	1,27	1,41	1,57	1,72	1,90		-		
Береза	0,97	0,98	1,0	1,02	1,07	1,15	1,26	1,37	1,52	1,67	1,81	2,0	_	
Сосна .	1,0	1,0	1,0	1,0	1,04	1,08	1,13	1,19	1,27	1,34	1,42	1,56	1,71	1,88
Ель	0,99	0,99	1,0	1,03	1,06	1,10	1,19	1,30	1,44	1,55	1,70	1,84	2,02	1,18

Сводная таблица результатов наблюдений

Таблица 2

1	Порода											
Толщ на материала в мм	дуб			береза		сосна			, ель			
В мм	<i>М</i> имп/ м и́н	P %	V %	М имп_миц	P%	V%	<i>М</i> нмп/м и н	P %	V%	М имп/мин	P%	V%
10	357	6,2	26,0	325	4,3	13,8	612	3,1	10,3	533	2,6	8,4
20	610	6,3	20,2	536	6,4	19,4	719	2,5	7,9	748	3,5	22,0
· 30	747	5,8	18,7	758	4,9	15,8	681	3,2	10,6	977	4,8	12,0
50	1361	2,9	9,3	1063	3,4	10,9	1351	3,5	11,0	1004	4,4	12,5
70	2002	3,0	13,0	1975	3,8	12,3	2111	3,3	10,6	1831	3,8	12,8
100	2760	3,4	11,2	2904	2,1	8,3	3031	1,8	5,6	2640	2,3	7,1
150	-	_	<u> </u>	3805	1,7	5,3	3919	2,0	6,3	4102	1,2	3,8
200		_	-	4205	1,9	6,3		_		5252	1,9	6,3
min	_	2,9	9,3	. —	1,7	5,3	_	1,8	5,6	_	1,2	3,8
max	<u> </u>	6,3	26,0	_	6,4	15,8	_	3,5	11,0		4,8	22,0
- Среднее	· 	4,6	16,4		3,6	11,5		2,8	8,9		3,1	10,6

толщины было взято по десять образцов и на каждом образце производи-

лось по пять замеров количества проникающей радиации.

У взятых образцов были предварительно определены влажность (с точностью 1%) и объемный вес древесины (с точностью $0.01~\text{г/см}^3$) в соответствии с требованиями ГОСТа 6336-52. Далее, объемный вес был приведен к влажности 15% по формуле:

$$\gamma_{15} = \gamma_{W} \left[1 + 0.01 \left(1 - k_{0} \right) \left(15 - W \right) \right] \; \mathrm{g/cm^{3}}. \label{eq:gamma_15}$$

 $(k_0 = 0.6$ для березы и $k_0 = 0.5$ для остальных пород).

После проведенной таким образом подготовки образцов замерялась интенсивность проникающих гамма-лучей в направлении, перпендикулярном волокнам, и определялось количество поглощенных с приведением последних также к влажности 15%. Для этой цели использовалась установленная автором зависимость:

$$J_{_{\Pi \Gamma \ 15}} = \frac{J_0 - J_{_{\Pi}W}}{k_{W}}$$
 ,

где $J_{\rm nr\,15}$ — количество γ -лучей, поглощаемых при 15% влажности; J_0 — интенсивность падающего потока γ -квантов с учетом фона; $J_{\rm n}W$ — интенсивность проникающих γ -лучей при фактической влажности;

kW — коэффициент пересчета, определенный автором для некоторых древесных пород при различной влажности. Значения k_W приведены в табл. 1.

Для экспериментальных исследований была использована промышленная гамма-установка типа ГУП-Со-0,5-1, активность излучения препарата которой (кобальт-Со 60) специальной свинцовой диафрагмой (перегородкой) была снижена на выходе до 1 мг/экв Ra.

Количество проникающего излучения определялось с помощью самогасящегося счетчика типа MC-7, помещенного в специальном свинцовом домике с отверстием $1\ cm^2$, и пересчетной установки типа Б. При этом направление строго канализированного пучка -лучей было перпендикулярным направлению волокон.

Результаты измерений, обработанные методами вариационной статистики, согласно требованиям ГОСТа 6336-52, сведены в табл. 2 и воспроизведены графически (рис. 1, a) с последующим определением коэффициентов корреляции и уравнений связи полученных зависимостей.

Полученные результаты можно считать достаточно надежными, поскольку показатель точности не превышает ± 5 %, что приемлемо (в соответствии с ГОСТом 6336-52).

Исходя из полученных средних значений вариационного коэффициента, можно считать для каждой древесной породы, что при определении размеров материала с помощью гамма-лучей, вариационный коэффициент равен (табл. 2):

для дуба $\pm 16\%$, для березы $\pm 12\%$, для сосны $\pm 9\%$, для ели $\pm 11\%$.

Найденные значения вариационного коэффициента позволяют при дальнейших исследованиях подойти к определению числа наблюдений, необходимых для получения наиболее достоверных результатов. Обращает на себя внимание тот факт, что по мере увеличения размеров ма-

териала значения вариационного коэффициента для всех пород уменьшаются.

Коэффициенты корреляции полученных зависимостей определялись методом сумм и приведены в табл. 3.

Коэффициенты корреляции

Таблица 3

.		Породы					
Показатели	Формулы	дуб	береза	сосна	ель		
Коэффициент корреля-	$r = \frac{\Sigma xy}{\sqrt{\Sigma x^2 \Sigma y^2}}$	1,0	1,91	1,0	1,0		
Ошибка коэффициента корреляции	$m_r = \pm \frac{1 - r^2}{V\overline{n}}$	0	± 0,06	0	o		
Отношение коэффициен- та корреляции к его ошибке	$\frac{r}{m_r} \geqslant 4$	0	 15,1 ≥ 4	0	0		

Рассматривая полученные результаты, можно считать зависимость поглощения гамма-лучей от размеров пиломатериалов вполне доказанной, поскольку во всех случаях значения коэффициента корреляции либо равны единице, либо близки к ней

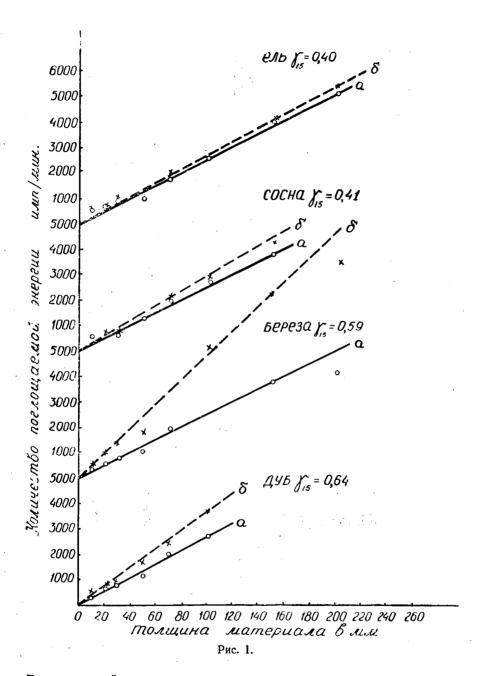
Изучая полученные зависимости, можно сделать первый вывод, что увеличение количества поглощенных γ -квантов при увеличении толщины поглощающего слоя в исследованных пределах (до 200 мм) следует, для изучавшихся древесных пород, закону прямой.

Таким образом уравнение (1) основного закона ослабления γ -излучения в зависимости от размеров материала в нашем случае может быть представлено в виде:

$$J_0 - J = J_0 (1 - e^{-ud}). (2)$$

Однако поскольку в разложении $e^{-\mu d} = 1 - \mu d \ \mu d < 1$, то можно ограничиться двумя первыми членами уравнения, тогда получим окончательно:

$$J_0 - J = J_0 \mu d, \tag{3}$$


то есть количество поглощенного излучения $(J_{\rm nr}=J_0-J)$ прямо пропорционально интенсивности падающего потока гамма-лучей, коэффициенту линейного ослабления и толщине поглощающего слоя, то есть размеру материала (ширине или толщине), что и соответствует найденным зависимостям.

Исходя из сказанного, представляется возможным определить, в первом приближении, значения коэффициента линейного ослабления, равного:

$$\mu = \frac{J_{\rm nr}}{J_0 d} c \mathcal{M}^{-1}. \tag{4}$$

Найденные значения коэффициента ослабления при направлении пучка γ -лучей перпендикулярно волокнам и активности препарата і мг/экв Ra приведены ниже:

Порода:	Дуб	Береза	Сосна	Ель
Коэффициент ослабления	0,022	0,020	0,021	0,021

Выражая найденные зависимости количества поглощенного излучения от размеров пиломатериалов в виде уравнений связи, получим значения, приведенные в табл. 4.

С помощью этих уравнений можно по количеству поглощенной интенсивности — $J_{\rm nr}$ имп/мин судить с достаточной степенью точности ($\pm 2\%$) о размерах пиломатериалов.

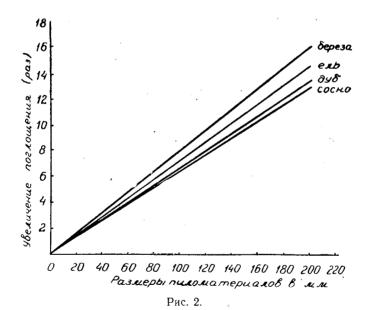

Другим весьма важным выводом является то, что колебания во влажности и абсолютной плотности пиломатериалов при определении

Таблица 4 Уравнения связи

Порода	При приведении к одному объемному весу и влажности 15%	Без приведения
Дуб	$d=0.0364~J_{ m nr}$ мм	$d = 0.0264 J_{\text{HF}} MM$
Береза	$d = 0.0400 J_{\text{HF}} MM$	$d = 0.0200 J_{\text{HF}} MM$
Сосна	$d=0.0382~J_{ m nr}$ MM	$d=0.0320~J_{ m nr}$ MM
Ель	$d = 0.0382 \ J_{\rm nr} \ {\it max}$	$d = 0.0^{\circ}44 \ J_{\rm HF} \ MM$

их размеров существенного влияния на характер закономерностей не оказывают, воздействуя лишь на абсолютные значения количества поглощенного излучения. Сказанное находит свое подтверждение в графиках (рис. 1, б), выражающих зависимость поглощения излучения от изменения размеров, но без учета влияния колебаний влажности и абсолютной плотности материала.

В этом случае можно пользоваться уравнениями связи, полученными без приведения к одному объемному весу и влажности 15% и приведенными выше в табл. 4.

В целях сравнения полученных данных для различных пород выражаем закономерности, определяющие изменения количества поглощенного излучения в зависимости от изменения размеров материала в относительных величинах, графическое изображение которых приведено на рис. 2.

Не лишены интереса сравнительные данные, полученные автором по спределению толщины сосновых пиломатериалов рассматриваемым методом с помощью гамма-лучей, излучаемых радиоактивным кобальтом — $\mathrm{Co^{60}}$ (энергия γ -квантов — 1,33 $\mathit{Məb}$), цезием — $\mathrm{Cs^{134}}$ (энергия γ -квантов — 0,8 $\mathit{Məb}$) при активности источников 1 $\mathit{me/экв}$ Ra и рентгеновскими лучами при силе тока 2 ma и напряжении 50 kV .

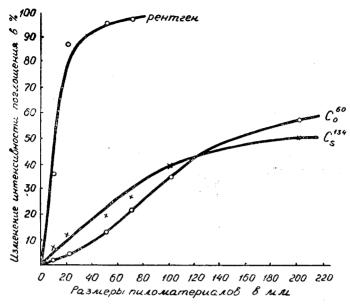
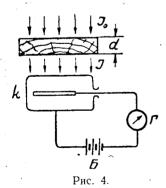



Рис. 3.

Результаты исследований представлены на рис. 3.

Из рассмотрения графика видно, что поглощение для каждого источника излучения имеет свою характерную зависимость, свидетельствующую о наличии определенных закономерностей между размерами древесных материалов, поглощением и энергией квантов излучения. Сказанное еще раз подтверждает возможность применения радиоактивных излучений для размерной сортировки пиломатериалов.

Пользуясь установленными закономерностями, представляется возможным построить специальные контрольно-измерительные приборы, основанные на поглощении γ -лучей и пригодные для работы в условиях непрерывного потока. Принципиальная схема такого прибора приведена на рис. 4.

В заключение следует отметить, что изложенный метод использования гамма-излучения для измерения размеров пиломатериалов и отдельных деталей деревообработки испытан еще с недостаточной полнотой. Тем не менее вопросы использования его в практике лесопильных и деревообрабатывающих произ-

водств уже на данном этапе их разрешения представляют большой научный и практический интерес, а перспективы применения этого нового метода вполне очевидны.