УДК 625.711.84 + 625.31

В. С. Морозов

Морозов Владимир Станиславович родился в 1955 г., окончил в 1978 г. Архангельский лесотехнический институт, кандидат технических наук, доцент кафедры строительной механики и сопротивления материалов Архангельского государственного технического университета. Имеет более 40 печатных работ в области строительства и эксплуатации зимних лесовозных дорог.

К ВОПРОСУ О РАСЧЕТЕ ТОЛЩИНЫ ЗИМНИХ ЛЕСОВОЗНЫХ ДОРОГ НА БОЛОТАХ

Дано обоснование расчетной схемы и ее математической модели для определения толщины зимних лесовозных дорог на болотах.

зимние дороги, болота, толщина, модуль упругости, напряжения.

В настоящей статье дается обоснование расчетной схемы для определения толщины зимних лесовозных дорог на болотах и методика ее определения в разных условиях. Такая задача неоднократно исследовалась нами ранее [3–7, 9], но она требует уточнения.

Несущий слой мерзлого торфа можно рассматривать как тонкую плиту, лежащую на основании из талого торфа меньшей прочности. Эта предпосылка была выдвинута в работах [1, 10 и др.], однако подтверждалась в основном умозрительными рассуждениями. Нами накоплен достаточный аналитический и расчетный материал, который позволяет дать количественное подтверждение.

Напряженно-деформированное состояние дорожной одежды из мерзлого торфа исследовано нами двумя способами: методом конечных

элементов и с помощью формул продольнопоперечного изгиба балок бесконечно большой длины, лежащих на линейнодеформируемом основании [2].

Метод конечных элементов подробно рассмотрен в работе [5]. Из материалов, полученных при обработке данных расчета, наибольший интерес представляет график распределения нормальных напряжений по толщине мерзлого торфа (рис. 1). Изменяется не только их значение, но и знак, что имеет место при изгибе плит или балок.

Этот результат является весьма существенным, так как при расчете по методу ко-

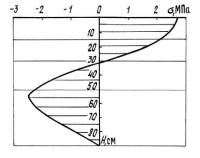
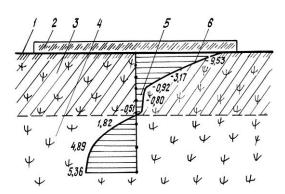



Рис. 1. График распределения нормальных напряжений σ по толщине мерзлого торфа H

Рис 2. Экспериментальные данные распределения температур по толщине основания зимней дороги: I — поверхность болота; 2 — слой снегольда; 3 — мерзлый торф; 4 — талый торф; 5 — зона фазовых переходов; 6 — график распределения температур по толщине основания

нечных элементов не задаются какими-либо предпосылками по виду расчетной схемы. Известно только, как модули упругости мерзлого и талого торфа распределяются по толщине болота в соответствии с графиком изменения температуры, наподобие экспериментального графика, приведенного на рис. 2.

Рис. 1 показывает, что в крайних нижних волокнах плиты из мерзлого торфа напряжения равны нулю, т. е. модуль упругости в этих волокнах мало отличается от модуля упругости талого торфа. Напряжения равны нулю также на границе между зонами сжатия и растяжения. Следовательно, через нее проходит нейтральная плоскость.

Наконец, в соответствии с теорией изгиба балок и плит, лежащих на линейно-упругом основании, в зонах сжатия и растяжения нормальные напряжения в некоторых волокнах максимальны. Из графика на рис. 1 видно, что максимум растягивающих напряжений σ_{max} приходится на волокна, расположенные между нейтральной плоскостью и основанием из талого торфа. Значение σ_{max} используют при определении прочности мерзлого торфа и требуемой толщины слоя мерзлого торфа для пропуска по дороге автомобиля заданной нагрузки.

Таким образом, предпосылка о том, что слой мерзлого торфа можно рассматривать как плиту, лежащую на линейно-деформированном основании, подтверждается результатами расчета основания по методу конечных элементов. Она подтверждается также данными экспериментов по измерению напряжений на действующих дорогах с помощью грунтовых динамометров [8].

При расчете на прочность лесовозной автомобильной дороги при нагрузке ее лесовозным автопоездом с прицепом-роспуском за расчетную можно принять нагрузку от прицепа. Колеса автомобиля находятся достаточно далеко от прицепа и на нагрузку от него практически не влияют (рис. 3). Это обстоятельство облегчает расчет дорожной одежды и не влияет на ее прочность.

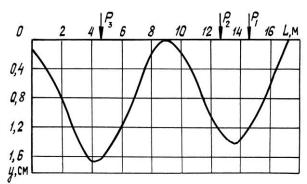
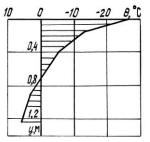


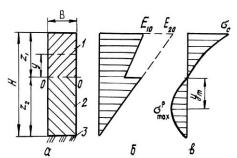
Рис. 3. Кривая продольных прогибов y: P_1 , P_2 — нагрузка от осей автомобиля; P_3 — нагрузка от прицепа-роспуска

Рассмотрим результаты расчета зимней дорожной одежды, используя теорию изгиба балок и плит бесконечно большой длины, лежащих на линейно-деформированном основании.

Первая особенность плиты из мерзлого торфа заключается в том, что (в отличие от обычных строительных конструкций) ее температура изменя-

ется по толщине (рис. 4), имея обычно максимальное отрицательное значение на поверхности дороги и понижаясь до нуля на некоторой глубине, являющейся границей мерзлой и талой зон торфа. Пропорционально температуре изменяется и модуль упругости мерзлого торфа E. Его значение наибольшее на поверхности дороги и постепенно уменьшается по толщине. На границе между мерзлым и талым торфом он равен модулю упругости талого торфа, который весьма мал по сравнению с модулем мерзлого торфа на поверхности дороги. Поэтому можно принять, что при $\Theta = 0$ и E = 0, а между максимальными и минимальными значениями он изменяется по линейному закону.




Рис. 4. График изменения температуры по глубине грунтового массива

Вторая особенность расчета такой плиты состоит в том, что модули упругости мерзлого торфа в сжатой и растянутой зонах различны, т. е. торф относится к разномодульным телам.

Для того чтобы при расчете дорожной одежды из мерзлого торфа можно было использовать методы строительной механики, необходимо найти эквивалентный модуль упругости слоя мерзлого торфа.

На рис. 5 приведено условное поперечное сечение дорожной одежды (a), графики модулей упругости (δ) и график изменения нормальных напряжений σ_c по толщине (s). Здесь обозначено: H – толщина дорожной одежды; B – ее ширина; z_1, z_2 – координаты, определяющие положение нейтральной

Рис. 5. Расчетные схемы: a — условное поперечное сечение; δ — графики модулей упругости; ϵ — эпюра нормальных напряжений; I — зона сжатия; 2 — зона растяжения; 3 — основание из талого торфа; θ 0- θ 0 — нейтральная плоскость

плоскости; E_{10} , E_{20} — модули упругости мерзлого торфа на поверхности проезжей части соответственно на сжатие и растяжение.

Рассматривая схему на рис. 5, δ , нетрудно составить выражения для определения модуля упругости в любом слое дорожной одежды, расположенном на расстоянии y от нейтральной плоскости: для участка сжатия

$$E_1 = \frac{E_{10}}{H}(z_2 + y);$$

для участка растяжения

$$E_2 = \frac{E_{20}}{H}(z_2 - y).$$

Напряжения в зонах сжатия и растяжения изменяются по квадратичному закону:

$$\sigma_1 = \frac{E_1}{\rho} y = \frac{E_{10}}{H\rho} (z_2 y + y^2); \tag{1}$$

$$\sigma_2 = \frac{E_2}{\rho} y = \frac{E_{20}}{H\rho} (z_2 y - y^2),$$
 (2)

где ρ – радиус кривизны плиты в рассматриваемом поперечном сечении.

Положение нейтральной плоскости, т. е. координату z_1 , находим из условия равенства нулю суммы сжимающих F_1 и растягивающих F_2 сил, действующих в зонах сжатия и растяжения:

$$F_1 = B \int_{z_0}^{z_1} \sigma_1 dy = \frac{BE_{10}}{6H\rho} (3H - z_1) z_1^2;$$

$$F_2 = -B \int_0^{z_2} \sigma_2 dy = -\frac{BE_{20}}{6H\rho} (H - z_1)^3.$$

Используя условие $F_1 + F_2 = 0$, получаем выражение

$$E_{10}z_1^2(3H-z_1)-E_{20}(H-z_1)^3=0. (3)$$

Вводим безразмерную величину $v = z_1/H$ и приводим уравнение (3) к виду

$$v = \sqrt{\frac{E_{20}(1-v)^3}{E_{10}(3-v)}}.$$
 (4)

Решая уравнение (4) методом итераций, находим значение v, затем z_1 . Далее с помощью уравнений (1) и (2) можно построить эпюры напряжений для любого поперечного сечения с радиусом кривизны ρ . Такая эпюра показана на рис. 5, ϵ . Они качественно совпадают с эпюрой, приведенной на рис. 1.

Совпадение эпюр напряжений показывает, что схема на рис. 5, a объективна и реально отражает сущность рассматриваемого физического процесса.

Используя схему на рис. 5 и уравнения (1) и (2), можно получить выражения для определения эквивалентного модуля упругости E_3 дорожной одежды из слоя мерзлого торфа

$$E_{2} = E_{10}v^{3}(4-v) + E_{20}(1-v)^{4}$$
 (5)

и уравнения для определения минимальной толщины слоя мерзлого торфа для пропуска по дороге заданной внешней нагрузки от автопоезда:

$$H_{\min} = \left[\frac{0.075(1-\mu^2)(1-\mathbf{v})^2 E_{20} P_3}{[\sigma_2] B(0.3\alpha C E_3^3)^{0.25}} \right]^{0.8}, \tag{6}$$

где

 H_{\min} – минимальная толщина дорожной одежды, см;

μ – коэффициент Пуассона;

 E_{20} – модуль упругости мерзлого торфа на растяжение, МПа;

 P_3 – максимальная заданная нагрузка от автопоезда, кH;

 $[\sigma_2]$ – допускаемое напряжение, МПа;

B — ширина дороги, см;

α – коэффициент поперечного изгиба;

C – коэффициент постели, H/cm^3 ;

 E_9 – эквивалентный модуль упругости, МПа;

0,075; 0,3 – множители, необходимые для выравнивания размерности величин, входящих в уравнение (6).

Система уравнений (4) - (6) дает полное решение задачи по расчету дорожной одежды из мерзлого торфа. Эту систему можно рассматривать как математическую модель для исследования процесса напряженно-деформированного состояния дорожной одежды из мерзлого торфа.

Как и всякая математическая модель, она требует уточнения при сравнении с физической моделью и физическим процессом продольно-поперечного изгиба зимней дорожной одежды на болотах.

СПИСОК ЛИТЕРАТУРЫ

1. Вялов С.С. и др. Строительство промысловых сооружений на мерзлом торфе / С. С. Вялов, Γ . Л. Каган, А. Н. Воевода, В. И. Муравленко. – М.: Недра, 1980.-144 с.

- 2. *Микеладзе Ш.Е.* Некоторые задачи строительной механики. М.: ОГИЗ, 1948. 268 с.
- 3. *Морозов В.С.* О расчете на прочность оснований зимних автомобильных дорог на болотах // Лесн. журн. 1990. № 3. С. 52–57. (Изв. высш. учеб. заведений).
- 4. *Морозов В.С.* Об оценке напряженного состояния оснований зимних дорог на болотах // Лесн. журн. -1990. -№1. -С. 37–43. (Изв. высш. учеб. заведений).
- 5. *Морозов В.С.* Расчет напряженно-деформированного состояния оснований зимних лесовозных автомобильных дорог из мерзлого торфа // Лесосечные, лесоскладские работы и транспорт леса / ЛТА. Л., 1990. С. 98–102.
- 6. *Морозов В.С.* Расчет толщины зимних лесовозных дорог на болотах // Лесн. журн. -1991. -№ 3. С. 48–52. (Изв. высш. учеб. заведений).
- 7. Морозов В.С. Расчет на прочность оснований зимних дорог на болотах //Лесосечные, лесоскладские работы и транспорт леса / ЛТА. Л., 1991. С. 82–88.
- 8. *Морозов В.С.* Исследование напряженно-деформированного состояния зимних дорог на болотах // Лесн. журн. -1991. № 5. С. 55—61. (Изв. высш. учеб. заведений).
- 9. *Морозов В.С.* Основные предпосылки расчета толщины многослойного основания из мерзлого торфа // Лесн. журн. 1999. № 2–3. С. 77–82. (Изв. высш. учеб. заведений).
- 10. *Цытович Н.А.* Механика мерзлых грунтов. М.: Высш. шк., 1973. 143 с.

Архангельский государственный технический университет

Поступила 10.01.2000 г.

V.S. Morozov

To the Question of Estimating Thickness of Winter Forest Roads on Bogs

The substantiation of the design model and its mathematical model are given for determining thickness of winter forest roads on bogs.