А.Н. ОРЕХОВ, Э.Н. САБУРОВ

Архангельский государственный технический университет

Орехов Алексей Николаевич родился в 1953 г., окончил в 1976 г. Архангельский лесотехнический институт, ассистент кафедры теплотехники Архангельского государственного технического университета. Имеет более 30 печатных трудов и изобретений.

Сабуров Эдуард Николаевич родился в 1939 г., окончил в 1961 г. Архангельский лесотехнический институт, доктор технических наук, профессор, заведующий кафедрой теплотехники, проректор по научной работе Архангельского государственного технического университета, академик Российской и Международной инженерных академий, Российской академии естественных наук, заслуженный деятель науки и техники РФ. Имеет более 300 публикаций в области аэродинамики и конвективного теплообмена в сильно закрученных потоках, их использования для интенсификации процессов тепломассообмена в аппаратах различного технологического назначения.

ИССЛЕДОВАНИЕ ТЕПЛООТДАЧИ НА БОКОВОЙ ПОВЕРХНОСТИ РАБОЧЕГО ОБЪЕМА ЦИКЛОННЫХ КАМЕР С ТОРЦЕВЫМ ВЫВОДОМ ГАЗОВ

Получены уравнения, позволяющие рассчитывать локальные и средние значения коэффициентов теплоотдачи боковой поверхности рабочего объема циклонной камеры с торцевым выводом газов.

Циклонно-вихревые камеры нашли широкое промышленное применение (в том числе и на предприятиях химико-лесного комплекса) в качестве современных нагревательных и топочных устройств, сепараторовтеплоутилизаторов, энерготехнологических установок, теплообменных и газогорелочных устройств и т.д. [2, 5]. Определяется это, прежде всего, их высокими технико-экономическими характеристиками, конструктивной а также высокой интенсивностью конвективного тепломассообмена на боковой поверхности рабочего объема - в основной зоне рабочих процессов. Последний фактор определяет организации актуальность работ, посвященных экспериментальным и теоретическим исследованиям теплоотдачи на боковой поверхности рабочего объема циклонных камер [2, 3, 5, 6-9].

В обобщенном виде схема течения у боковой поверхности циклонной камеры, предложенная Э.Н. Сабуровым и нашедшая применение в ряде работ [2-5], изображена на рис. 1. Течение представлено в виде струйного потока, распространяющегося около криволинейной стенки с постоянным радиусом продольной кривизны R. Координата x направлена вдоль поверхности камеры по траектории движения потока, а y нормально к ней. Начало координат совмещено со срезом входного шлица. Расчетному предшествует нерасчетный входной участок длиной $x_{\rm вx}$. На этом участке в основном сосредоточено влияние на течение особенностей распределения скорости потока в шлице и взаимодействия входящей в камеру струи с уже вращающимися в ней газами.

В работе [1] установлено, что в пристенном пограничном слое на боковой поверхности циклонной камеры распределение полной скорости потока ν может быть аппроксимировано формулой

$$\frac{v}{v_{\delta}} = \left(\frac{y}{\delta}\right)^{1/14} \quad , \tag{1}$$

где v_{δ} — полная скорость потока на границе пристенного пограничного слоя;

 δ — толщина пристенного пограничного слоя.

Установлено также, что коэффициент сопротивления трения на боковой поверхности рабочего объема циклонной камеры $c_f = 2\tau_w / \rho v_\delta^2$ (τ_w — касательное напряжение трения на боковой поверхности камеры, ρ — плотность потока) зависит от параметра $m_0 = v_0 / v_{\rm BX}$ (v_0 — полная скорость на границе осесимметричного ядра потока, $v_{\rm BX}$ — среднерасходная скорость потока во входных шлицах), являющегося аналогом известного параметра спутности или относительной скорости спутного потока, относительной площади входа потока в камеру $\bar{f}_{\rm BX} = 4f_{\rm BX} / \pi D_{\rm K}^2$ ($D_{\rm K}$ — диаметр камеры) и числа Рейнольдса $Re_\delta = v_\delta \delta / v$ (v — кинематическая вязкость потока):

при $m_0 \le 1$

$$c_f = 0.018 \,\mathrm{Re}_\delta^{-2/15} \, m_0^{-0.304} \; ;$$
 (2)

при $m_0 > 1$

$$c_f = 0.021 \,\mathrm{Re}_\delta^{-2/15} \, m_0^{-1.91} \,.$$
 (3)

В работе [1] получены также зависимости для определения \overline{v}_{δ} и $\overline{\delta}$ и $\overline{\delta}$, которые могут быть использованы для расчета теплоотдачи на боковой поверхности циклонных камер с торцевым выводом газов.

Рассмотрим общий случай теплообмена с начальным необогреваемым участком. Безразмерная длина необогреваемого участка в пределах расчетной зоны течения $\overline{x} = x_{\text{н,y}}/r_0$ где r_0 – радиус ядра потока. Как и раньше [3, 4], полагаем физические характеристики среды и ее температуру на границе пристенного пограничного слоя постоянными. Поскольку скорость потока умеренная, тепловыделением за счет трения пренебрегаем. При принятых предположениях интегральное соотношение энергии может быть записано следующим образом:

$$\frac{d}{dx} \int_{0}^{\delta_{T}} v(T_{w} - T) dy = \frac{q_{w}}{\rho c_{p}}, \tag{4}$$

где $\delta_{\scriptscriptstyle T}$ – толщина теплового пограничного слоя;

 T_w — температура поверхности теплообмена (боковой поверхности камеры);

T — температура среды;

 q_{w} – плотность теплового потока на стенке;

 ρ , c_p – плотность и теплоемкость среды при постоянном давлении.

Предположим, что профиль избыточной температуры $\vartheta = T - T_w$ по аналогии с профилем скорости (1) в пределах расчетного участка описывается уравнением

$$\frac{9}{9_{\delta}} = \left(\frac{y}{\delta_{\mathrm{T}}}\right)^{1/14},\tag{5}$$

где $9_{\delta} = T_{\delta} - T_{w}$ — избыточная температура среды на границе теплового пограничного слоя.

Распределения касательного напряжения трения и плотности теплового потока в турбулентном пограничном слое определяем по общепринятым формулам [9], которые после соответствующих преобразований и подстановки степенных распределений (1) и (5) дадут уравнение

$$\frac{q}{\tau} = \frac{c_p}{\Pr_{TB}} \frac{\vartheta_{\delta}}{v_{\delta}} \left(\frac{\delta_T}{\delta}\right)^{-1/14},\tag{6}$$

где Pr_{TB} – турбулентное число Прандтля.

Считаем, что в пределах тонкого, по сравнению с радиусом кривизны поверхности теплоотдачи, пограничного слоя $q \approx q_w$, $\tau \approx \tau_w$. Перейдя на безразмерные переменные, запишем уравнение (6) следующим образом:

$$St = \frac{c_f}{2Pr_{TE}} \left(\frac{\delta_T}{\delta}\right)^{-1/14},\tag{7}$$

где St — число Стантона, St = q_w / (р $c_p \vartheta_\delta v_\delta$).

Подставим в уравнение (4) выражения для скорости (1), температуры (5) и, используя связь (7), проделаем указанные в нем операции:

$$\frac{15d\tilde{\delta}}{16d\bar{x}} + \frac{\tilde{\delta}}{Re_{\delta}} \frac{dRe_{\delta}}{d\bar{x}} = \frac{4}{7}c_f \frac{1}{Pr_{TE}\bar{\delta}} , \qquad (8)$$

где $\widetilde{\delta} = (\delta_{\rm T} / \delta)^{8/7}$, $\overline{x} = x / r_0$ – безразмерная продольная координата.

Для решения (8) воспользуемся полученными в работе [1] формулами для безразмерной толщины пристенного пограничного слоя, $\overline{\delta} = \delta \ / \ r_0$ коэффициента сопротивления трения c_f и относительной скорости на границе пристенного пограничного $\overline{v}_\delta = v_\delta \ / \ v_0$ слоя. После подстановки их в (8) и выполнения необходимых преобразований получим линейные дифференциальные уравнения: при $m_0 \le 1$

$$\frac{15d\tilde{\delta}}{16d\bar{x}} + \left(0.965 - \frac{0.83}{\bar{R}}\right) \frac{\tilde{\delta}}{\bar{x}} =$$

$$0.26m_0^{-0.126} \bar{R}^{-0.172} \bar{f}_{\text{Bx}}^{-0.0081} \bar{x}^{-(0.923 - 0.5/\bar{R})} \Pr_{\text{TE}}^{-1} \operatorname{Re}_0^{-0.078}$$

при $m_0 > 1$

$$\frac{15d\widetilde{\delta}}{16d\overline{x}} + \left(0,89 - \frac{0,76}{\overline{R}}\right) \frac{\widetilde{\delta}}{\overline{x}} =$$

$$0,22m_0^{-1,113} \overline{R}^{-0,152} \overline{f}_{\text{BX}}^{-0,014} \overline{x}^{-(0,843-0,454/\overline{R})} \operatorname{Pr}_{\text{TE}}^{-1} \operatorname{Re}_0^{-0,0735}$$

где $\overline{R}=R/r_o$ – радиус кривизны траектории движения потока; Re_0 – число Рейнольдса, $\mathrm{Re}_0=v_0\,r_0/v$

Решаем (9) и (10) относительно $\widetilde{\delta}$:

при $m_0 \le 1$

$$\widetilde{\delta} = 0.277 m_0^{-0.126} \overline{R}^{-0.172} (106 - 0.385 / \overline{R})^{-1} f_{\text{BX}}^{-0.0081} \times \times \overline{x}^{(0.077 + 0.5/\overline{R})} \left[1 - \left(\frac{x_{\text{H.y}}}{x} \right)^{(1.106 - 0.385/\overline{R})} \right] \Pr_{\text{Tb}}^{-1} Re_0^{-0.078} ,$$
(11)

при $m_0 > 1$

$$\widetilde{\delta} = 0.241 m_0^{-1.113} \overline{R}^{-0.152} (11 - 0.36 / \overline{R})^1 \overline{f}_{BX}^{-0.014} \times \overline{x}^{(0.16 + 0.45 / \overline{R})} \left[1 - \left(\frac{x_{H.y}}{x} \right)^{(1.11 - 0.36 / \overline{R})} \right] \Pr_{TE}^{-1} Re_0^{-0.0735}.$$
(12)

Локальное число Нуссельта представим в виде

$$Nu_0 = St \operatorname{Pr} \operatorname{Re}_0 \overline{\nu}_{\delta}, \qquad (13)$$

где Nu_0 – местное число Нуссельта, $Nu_0 = \alpha \ r_0 \ / \ \lambda$;

α – локальный коэффициент теплоотдачи на поверхности стенки;

 λ – коэффициент теплопроводности;

Pr – число Прандтля.

Используя найденные значения $\widetilde{\delta}$, уравнения (7) и (13), а также формул для $\overline{\mathcal{V}}_{\delta}$ [1], получим расчетные зависимости для определения локального коэффициента теплоотдачи по траектории движения потока: при $m_0 \le 1$

$$Nu_{0} = 0,0232(1,106 - 0,385 / \overline{R})^{1/16} \overline{R}^{-0,3} m_{0}^{-0,551} \overline{f}^{0,094} \overline{x}^{(0,037 - 0,335 / \overline{R})} \times \left[1 - \left(\frac{x_{\text{H.y}}}{x} \right)^{(1,106 - 0,385 / \overline{R})} \right]^{-1/16} Pr Pr_{\text{TB}}^{-0.694} Re_{0}^{0,892}$$

$$(14)$$

при $m_0 > 1$

$$\mathrm{Nu_0} = 0.0345(1.11 - 0.36\,/\,\overline{R}\,)^{1/16}\,\overline{R}^{\,-0.385} m_0^{\,-1.906}\,\overline{f}^{\,0.167}_{_{\rm BX}} \overline{x}^{\,(0.0345 - 0.338/\bar{R})} \,\times$$

$$\times \left[1 - \left(\frac{x_{\text{H.y}}}{x} \right)^{(1,11-0,36/\overline{R})} \right]^{-1/16} \Pr \Pr_{\text{Tb}}^{-0.694} \text{Re}_{0}^{0.887} *$$
 (15)

Для того, чтобы уравнения (14) и (15) наилучшим образом описывали экспериментальные данные, скорректируем их, домножив на поправочные коэффициенты k и $k_{\text{вых}}$, учитывающие неучтенные при решении аэродинамической задачи [1] влияние параметров $\overline{L}_{\text{к}}$ ($\overline{L}_{\text{к}}$ – относительная длина циклонной камеры, $\overline{L}_{\text{к}} = L_{\text{к}}/D_{\text{к}}$), $\overline{f}_{\text{вх}}$ и $\overline{d}_{\text{вых}}$ ($\overline{d}_{\text{вых}}$ – относительный диаметр выходного отверстия камеры; $\overline{d}_{\text{вых}} = d_{\text{вых}}/D_{\text{к}}$), на особенности формирования потока в шлицах и на нерасчетном входном участке:

$$k = 1,08 + 4,29 \, \bar{f}_{\text{BX}} - 0,23 \, \overline{L}_{\text{K}};$$
 (16)

$$k_{\text{BbIX}} = -1.85 | \overline{d}_{\text{gbIX}} - 0.43 |^{1.28} + 1.02.$$
 (17)

Величина поправочных коэффициентов k и $k_{\text{вых}}$ для большинства имеющих практическое значение вариантов соотношений геометрических параметров циклонных камер составляет 0,88...1,15 и лишь при крайних из рассмотренных значений $\bar{d}_{g_{\text{bix}}} = 0.7, \bar{f}_{\text{вx}} = 0.0202$ и 0,1014 указанные пределы, достигая, соответственно, 0,82;

Переходя к $Nu = \alpha D_{\kappa} / \lambda$; критериям, $Re_{Bx} = v_{Bx} D_{\kappa} / v$ и принимая $\overline{x} = x$ / $h_{\rm BX},~R\approx 1/~r_0~(\bar{r}=r_0~/~R_{\rm K}),~$ для воздуха ${\rm Pr}=0.7~{\rm и~Pr}_{\rm TB}=0.95,$ уравнения (14) и (15) можно представить: при $m_0 \le 1$

$$Nu = 0.0184(1.106 - 0.385\bar{r}_{0})^{1/16}\bar{r}^{0.192}m_{0}^{1.341}\bar{f}^{0.094}_{BX}kk_{BbIX} \times (2\bar{x}\bar{h}_{BX}/\bar{r}_{0})^{(0.037 - 0.335\bar{r}_{0})} \left[1 - \left(\frac{x_{H.y}}{x}\right)^{(1.106 - 0.385\bar{r}_{0})}\right]^{-1/16}Re_{BX}^{0.892};$$
(18)

при $m_0 > 1$

$$Nu = 0.0274(1.11 - 0.36\bar{r_0})^{1/16}\bar{r}^{0.272}m_0^{-1.019}\bar{f}^{0.167}kk_{\text{BMX}} \times \left(2\bar{x}\bar{h}_{\text{BX}}/\bar{r_0}\right)^{(0.0345 - 0.335\bar{r_0})} \left[1 - \left(\frac{x_{\text{H.y}}}{x}\right)^{(1.11 - 0.36\bar{r_0})}\right]^{-1/16} Re_{\text{BX}}^{0.887}.$$
(19)

Аналогичным образом можно получить уравнение для расчета коэффициентов теплоотдачи, заменив в диапазоне f_{py} = $=(1,42...10,14)\cdot 10^{-\frac{1}{2}}$ два уравнения для c_f одним

$$c_f = (0.025 - 0.123 \, \bar{f}_{\text{BX}}) \, \text{Re}_{\delta}^{-2/15} \,,$$
 (20)

и воспользовавшись формулами для $\bar{\delta}$ и $\bar{\nu}_{\delta}$ из работы [1]:

$$Nu = 0.0287(1 - 4.92\bar{f}_{BX})^{0.94} \bar{f}^{0.346}\bar{h}_{gX}^{-0.561}kk_{BMX}\bar{x}^{-0.264} \times \left[1 - \left(\frac{x_{H.y}}{x}\right)^{0.785}\right]^{-1/16} Re_{BX}^{0.879}, \quad (21)$$

где

$$k = 0.5 + 9.5 \ \overline{f}_{\text{BX}} - 0.16 \ \overline{L}_{\kappa}$$
 (22)

Коэффициент k имеет примерно такую же величину, что и поправка (16).

Из уравнений (18), (19) можно получить расчетные зависимости для определения среднего коэффициента теплоотдачи на полной длине спиральной траектории движения струи $\overline{X} = X / h_{\text{BX}}$: при $m_0 \le 1$

$$N\overline{u} = kk_{\text{вых}}k_{\text{Tl}}\overline{X}^{k_1} \operatorname{Re}_{\text{вх}}^{0,892}, \tag{23}$$

$$\begin{split} \mathrm{N}\,\overline{\mathrm{u}} &= k k_{_{\mathrm{BbIX}}} k_{_{\mathrm{Tl}}} \overline{X}^{_{}k_{1}}\,\mathrm{R}\,\mathrm{e}_{_{\mathrm{BX}}}^{_{0,892}}\,, \\ \mathrm{где}\ k_{_{\mathrm{Tl}}} &= 0,\!0191\!(1,\!106\!-\!0,\!385\bar{r_{\!0}})^{_{-15/16}} \bar{r_{\!0}}^{_{0,192}} m_{_{\!0}}^{_{0,341}} \bar{f}_{_{\mathrm{BX}}}^{_{0,094}} (2\bar{h}_{_{\mathrm{BX}}}\,/\,\bar{r_{\!0}})^{^{k_{\!1}}}\ ; \end{split}$$
 $k_1 = 0.037 - 0.335 \ \overline{r_0}$;

при $m_0 > 1$

$$N\overline{u} = kk_{BMX}k_{T2}\overline{X}^{k_2}Re_{BX}^{0,887},$$
 (24)

где
$$k_{\mathrm{T2}}=0{,}0294(1{,}11-0{,}36\bar{r_{0}})^{-15/16}\bar{r_{0}}^{0{,}272}m_{0}^{1{,}019}\bar{f}_{_{\mathrm{BX}}}^{0{,}167}(2\bar{h}_{_{\mathrm{BX}}}\,/\,\bar{r_{0}})^{k2}$$
 ; $k_{2}=0{,}0345-0{,}335$ $\bar{r_{0}}$;

Аналогичным образом из уравнения (21) для расчета среднего числа Нуссельта получена зависимость

$$N\overline{\mathbf{u}} = kk_{\text{вых}}k_{\text{Т3}}\overline{X}^{k_{3}}\operatorname{Re}_{\text{вх}}^{0,879},$$
 (25) где $k_{\text{Т3}} = 0.039(1 - 4.92\overline{f}_{\text{вх}})^{0.94}\overline{f}_{\text{вх}}^{0.346}\overline{h}_{\text{вх}}^{-0.561}$; $k_{3} = -0.264$.

Для вычисления полной длины траектории движения струи в уравнениях (23)-(25) можно использовать зависимость

$$\overline{X} = 0.413 \bar{f}_{\text{BX}}^{-1.135} + 4.685 \bar{f}_{\text{BX}}^{0.154} - \bar{z}_{\text{BX}},$$
 (26)

где $\overline{z}_{_{\rm BX}}-$ относительное расстояние между осью входных шлицев и ближайшему к ним выходному торцу циклонной камеры, $\overline{z}_{_{\rm BX}}=z_{_{\rm BX}}\,/\,D_{_{\rm K}}$.

На рис. 2 выполнено сопоставление уравнений (23)-(25) с опытными данными [5]. (В табл. 1 приведены значения геометрических параметров циклонных камер, на которых выполнены экспериментальные исследования, и им обозначения опытных точек, соответствующих рис. 2, 4).

Из рис. 2 видно, что в рассмотренных диапазонах изменения режимных и геометрических параметров циклонных камер наблюдается вполне удовлетворительное совпадение расчетных зависимостей с экспериментальными данными. Отклонение между ними для большинства точек не превышает $\pm 12 \dots 14$ %. Исключение, как и для поправочных коэффициентов (16), (17), составляют данные, относящиеся к крайним значениям геометрических параметров исследованных вариантов циклонных камер, а также опыты при малых значениях $Re_{\rm px} < 5 \cdot 10^4$.

В уравнениях (18), (23) выражение (1,106 — 0,385 \bar{r}_0) $^{1/16}\bar{r}_0^{0,192}$ (2 / \bar{r}_0) $^{(0,037-0,335}\bar{r}_0$) в интервале изменения \bar{r}_0 = 0,747 ... 0,830, имевших место в опытах при $m_0 \leq 1$ ($\bar{f}_{\rm Bx} = 0,0404$ и 0,0202) с точностью $\pm 0,8$ %, можно заменить постоянным множителем 0,763. Приняв согласно [1] $m_0 = 4,768\,\bar{f}_{\rm Bx}^{0,509}$ и из конструктивных особенностей экспериментальной установки $\bar{h}_{\rm Bx} = 1,97\,$ $\bar{f}_{\rm Bx}$, выражение $m_0^{0,341}\bar{f}_{\rm Bx}^{0,094}\bar{h}_{\rm Bx}^{(0,037-0,335\bar{r}_0)} = 1,414\,(1,97\,\bar{f}_{\rm Bx})^{(0,305-0,335\,\bar{r}_0)}$ в интервале $\bar{f}_{\rm Bx} = (2,02...4,04)\cdot 10^{-2}$ с точностью $\pm 2,6$ % можно заменить числом 1,265. В указанных диапазонах изменения геометрических характеристик циклонной камеры коэффициент $k=0,88\pm0,097$. С учетом отмеченного выше, при отсутствии необогреваемого участка уравнения (18), (19), (21) для расчета локальных коэффициентов теплоотдачи и (23) - (25) для средних примут следующий вид:

$$Nu = Ak_{BLIX} \, \overline{x}^{k_i} \, Re_{BX}^n \,, \tag{27}$$

$$N\overline{u} = \frac{A}{k_i + 1} k_{\text{\tiny BMX}} \overline{X}^{k_i} R e_{\text{\tiny BX}}^n, \qquad (28)$$

где A, k_i и n — постоянные, значения которых приведены в табл. 2.

На рис. 3 приведены результаты обобщения опытных данных, отражающих влияние на показатель степени n параметра m_0 и продольной координаты $\overline{z}=z$ / $D_{\rm K}$ в зависимости ${\rm Nu}({\rm Re}_{\rm Bx}^n)$. Показатель степени n определяли методом наименьших квадратов. Видно, что на расчетном участке движения струйного потока n зависит от относительной входной площади камеры или параметра m_0 и удаленности рассматриваемого сечения от входных шлицев. С учетом данного обстоятельства и влияния неавтомодельности течения на теплоотдачу [5] уравнению (28) можно придать вид, еще более приближенный к экспериментальным данным за счет коррекции по ним показателя n. В этом случае численные значения коэффициентов A, k_i, n , диапазон чисел Рейнольдса, в котором справедливо скорректированное уравнение (28), в зависимости от относительной скорости спутного потока следует выбирать из табл. 3.

На рис. 4 выполнено сопоставление уравнения (28) без коррекции (сплошные линии) и с коррекцией (штриховые) показателя n с опытными данными [5]. Получено вполне удовлетворительное совпадение расчетных и экспериментальных данных. Интересно отметить, что значения средних коэффициентов теплоотдачи, вычисленных по уравнению (28) и по ранее полученному для этой же задачи при другом способе определения n, и формуле для c_f , приведенной в работе [5], близки.

Выводы:

- 1. На основе струйной модели течения проанализированы особенности теплоотдачи на боковой поверхности циклонных камер с торцевым выводом газов.
- 2. Получены расчетные уравнения для локальных и средних чисел Нуссельта. Сопоставление их с опытными данными показало вполне удовлетворительное совпадение.
- 3. Уравнения могут быть рекомендованы для инженерных расчетов теплоотдачи на боковой поверхности рабочего объема циклонных камер с торцевым выводом газов.

СПИСОК ЛИТЕРАТУРЫ

Сабуров Э.Н., Загоскина Т.Г. Исследование потока в периферийной области циклонных камер //Лесн. журн.-1994.- №5-6. - С. 171-182. -(Изв. высш. учеб. заведений). [2]. Сабуров Э.Н., Карпов С.В. Циклонные устройства в деревообрабатывающем и целлюлозно-бумажном производстве /Под ред. Э.Н. Сабурова. -М.: Экология, 1993. - 368 с. [3]. Сабуров Э.Н., Леухин Ю.Л. Аэродинамика и теплообмен закрученного потока в цилиндрической камере // Инж.-физ. журнал. -1985.- Т.48, № 3.- С. 369 - 375. [4]. Сабуров Э.Н., Орехов А.Н. Исследование теплоотдачи в циклонных камерах большой относительной длины // Лесн. журн. - 1994. -№ 2. -С. 124 - 135. -(Изв. высш. учеб. заведений). [5]. Сабуров Э.Н. Циклонные нагревательные устройства с интенсифицированным конвективным теплообменом. - Архангельск: Сев.-Зап. кн. изд-во, 1995.- 341 с. [6]. Стерлигов В.В. Исследование на модели конвективного теплообмена в секционных печах: Автореф. дис. ... канд. техн. наук. - Новокузнецк, 1972. - 20 с. [7]. Сухович Е.П. Аэродинамика и конвективный теплообмен в вихревой камере: Автореф. дис. ... канд. техн. наук. - Рига, 1970. - 25 с. [8]. Тонконогий А.В., Вышенский В.В. Исследование конвективного теплообмена на моделях циклонных камер // Пробл. теплоэнергетики и прикладной теплофизики. - Алма-Ата: Наука КазССР, 1964. - Вып.1. - С.189-205.

У стименко Б. П. Процессы турбулентного переноса во вращающихся течениях. - Алма-Ата: Наука КазССР, 1977. - 228 с.

Поступила 13 марта 1997 г.

Таблица 1 Геометрические характеристики циклонной камеры и обозначения соответствующих им опытных данных

Ва- ри- ант	$\bar{f}_{ex} \cdot 10^2$	$\overline{h}_{ex} \cdot 10^2$	$ar{d}_{\scriptscriptstyle extit{BblX}}$	$\overline{L}_{\!\scriptscriptstyle K}$	Обоз- наче- ние
1	2,02	3,98	0,4	1,65	
2	2,02	3,98	0,4	1,25	
3	2,02	3,98	0,4	0,80	
4	4,04	7,96	0,4	1,65	
5	6,30	12,44	0,3	1,65	
6	6,30	12,44	0,4	1,65	
7	6,30	12,44	0,6	1,65	
8	6,30	12,44	0,7	1,65	
9	6,30	12,44	0,4	1,25	
10	6,30	12,44	0,4	0,80	
11	8,20	16,17	0,4	1,65	
12	10,14	19,95	0,4	1,65	
13	10,14	19,95	0,4	1,25	
14	10,14	19,95	0,4	0,80	

Таблица 2 Значения параметров, входящих в уравнения (27) и (28)

m_o	Re _{ex}	A	k_i	n
≤ 1	$1,0.10^56,3.10^5$	0,0157	k_1	0,892
> 1	$2,5\cdot10^46,3\cdot10^5$	0,0166	k_2	0,887
0,621,33	$2,5\cdot10^46,3\cdot10^5$	0,0198	k_3	0,879

Таблица 3 Значения параметров, входящих в скорректированное по опытным данным уравнение (28)

m_o	Re_{ex}	A	k_i	n
≤ 1	$1,0\cdot10^56,3\cdot10^5$	0,0479	k_1	0,80
	$1,1\cdot10^56,3\cdot10^5$	0,1324	k_2	0,72
	$2,5\cdot10^41,1\cdot10^5$	0,7579	k_2	0,57

	$1,1\cdot10^56,3\cdot10^5$	0,1133	k_3	0,74
0,621,33	$2,5\cdot10^41,1\cdot10^5$	0,8177	k_3	0,57