

УДК 581.162.41:582.47

M.B. $Cypco^1$, A.И. Барабин 2 , И.Н. Болотов 1 , Б.Ю. Филиппов 2

1Институт экологических проблем Севера Уральского отделения РАН

²Северный (Арктический) федеральный университет имени М.В. Ломоносова

Сурсо Михаил Вольдемарович родился в 1961 г., окончил в 1983 г. Архангельский лесотехнический институт, кандидат биологических наук, старший научный сотрудник Института экологических проблем Севера УрО РАН. Имеет 50 научных работ в области эмбриологии голосеменных.

E-mail: surso@iepn.ru

Барабин Александр Иванович родился в 1939 г., окончил в 1966 г. Архангельский лесотехнический институт, доктор сельскохозяйственных наук, профессор кафедры ландшафтного строительства и искусственных лесов Северного (Арктического) федерального университета имени М.В. Ломоносова. Имеет около 150 печатных работ в области лесосеменного мониторинга древесных пород на Европейском Севере России.

Тел.: 8(8182) 21 61 56

Болотов Иван Николаевич родился в 1977 г., окончил в 1999 г. Поморский государственный университет, доктор биологических наук, главный научный сотрудник лаборатории комплексного анализа наземной и космической информации для экологических целей, заместитель директора по научным вопросам Института экологических проблем Севера УрО РАН. Иеет более 100 научных публикаций в области эволюционной и популяционной экологии, ландшафтоведения, биогеографии, зоологии.

E-mail: inepras@yandex.ru

Филиппов Борис Юрьевич родился в 1974 г., окончил в 1997 г. Поморский государственный университет, доктор биологических наук, доцент, заведующий кафедрой зоологии и экологии Северного (Арктического) федерального университета имени М.В. Ломоносова. Имеет более 40 научных работ в области популяционной экологии. E-mail: fby@yandex.ru.

ВЕСЕННЕЕ РАЗВИТИЕ ПЫЛЬЦЫ У ЛИСТВЕННИЦЫ СИБИРСКОЙ (Larix sibirica Ledeb.) В СЕВЕРНОЙ ПОДЗОНЕ ТАЙГИ*

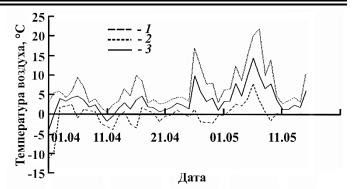
Приведены результаты исследований микроспоро- и микрогаметофитогенеза у лиственницы сибирской в северной подзоне тайги. Установлена продолжительность

^{*}Исследования выполнены в рамках Программы фундаментальных исследований УрО РАН, проект № 12-У-5-1005.

[©] Сурсо М.В., Барабин А.И., Болотов И.Н., Филиппов Б.Ю., 2012

отдельных стадий мейоза в микроспороцитах и выявлены нарушения при микроспорогенезе. Описаны процессы микрогаметофитогенеза при формировании пыльцевых зерен. Показаны аномалии развития пыльцы. Приведены результаты экспериментов по проращиванию пыльцы лиственницы *in vitro*.

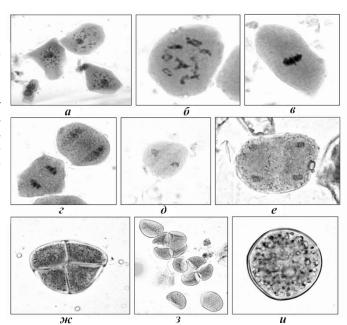
Ключевые слова: лиственница, мейоз, микроспороцит, микрогаметофит, пыльца.


Опыление у лиственницы, как и у всех хвойных, является необходимым условием формирования эмбриона. Поэтому процессы, лежащие в основе формирования и развития пыльцы, всегда привлекали внимание исследователей.

Исходный материал для анализа был собран в 2010–11 гг. в редкостойном лиственничнике (*Larix sibirica* Ledeb.) в Приморском районе Архангельской области. Состав насаждения: 1-й ярус – 10Лц, 2-й – 9Е1Б. Возраст лиственницы – 250...300 лет, средний диаметр – 60 см, средняя высота – 30 м. Тип леса – листвяг можжевельниковый.

Микростробилы лиственницы фиксировали темпорально в уксусном алкоголе от начала возобновления мейоза до раскрытия микроспорангиев. Периодичность фиксаций – 1...3 дня, в активной фазе мейоза (MI-AII) – ежедневно. Фиксированный материал промывали и хранили до использования в 70 %-м этаноле в холодильнике. Временные давленые препараты микростробилов окрашивали ацетожелезным гематоксилином – хлоралгидратом по Виттману [17] или ацетокармином [5]. Микроморфометрию пыльцевых зерен производили на временных неокрашенных водно-глицериновых препаратах при помощи окуляр-микрометра. У каждой особи измеряли минимальный и максимальный диаметры 50 пыльцевых зерен. Проращивание пыльцы *in vitro* осуществляли во влажных камерах в темноте при температуре 26,5 °C на 1,0 %-м агаре с добавлением 5 %-й сахарозы (или иных компонентов), или в жидких средах различного состава по методу «висячей капли» с последующим окрашиванием временных препаратов кристаллическим фиолетовым, галлоцианином, суданом-III, раствором йода в йодистом калии и другими красителями, или без окрашивания. Просмотр и фотографирование изображений выполняли при помощи лабораторного микроскопа AxioScope A1 в комплекте с цифровой фотокамерой Canon G10. Изображения редактировали при помощи программы AxioVision LE Release 4.8.1.

У лиственницы микростробилы формируются в результате гормонального перерождения вегетативных меристем брахибластов в генеративные [4]. Гистологическая дифференциация микроспорангиев завершается уже в год заложения примордиев микростробилов, после трансформации спорогенной ткани в мейоциты и их разобщения. Мейоз в микроспороцитах у лиственницы начинается в октябре. К зимнему покою микроспороциты переходят на стадии профазы I в диплотене. По наблюдениям ряда авторов [2, 8, 9] продолжительные зимние оттепели могут спровоцировать возобновление мейоза в микроспороцитах, что часто приводит к стерильности пыльцы. В условиях северной подзоны тайги при просмотре препаратов микростробилов, зафиксированных


Рис. 1. Температурный режим воздуха в районе исследований в период весеннего развития пыльцы у лиственницы (с 01.04 по 11.05.2010 г.): $1-\min$, $2-\max$, 3- средний

в середине февраля, единичные микроспороциты находились на стадии метафазы первого деления, что также подтверждает возможность зимнего возобновления мейоза у лиственницы.

Массовое весеннее развитие пыльцы у лиственницы в северной подзоне тайги начинается в конце марта — начале апреля при достижении пороговых значений среднесуточных температур воздуха — примерно —4 °C (рис. 1). «Активная стадия» мейоза — диакинез (поздняя анафаза II (рис. 2)) протекает весьма динамично. Продолжительность ее составляет от 4 до 8 дней. Среднесуточные температуры воздуха в этот период колеблются в диапазоне 0...4 °C. В результате мейоза микроспороцитов образуются тетрады гаплоидных микроспор, объединенных общей оболочкой, состоящей преимущественно из каллозы. Как и у всех хвойных видов, мейоз в микроспороцитах у лиственницы протекает асинхронно, и в препарате одного микростробила можно иногда

Рис. 2. Микроспорогенез у лиственницы в весенний период: a-e — мейоз в микроспороцитах (a — диакинез; δ , ϵ — метафаза I; ϵ — анафаза II; ϵ — анафаза II; ϵ — анафаза II); ϵ — тетрада микроспор; ϵ — распад тетрад; ϵ — микроспора

Динамика прохождения мейоза (в микроспороцитах) и микрогаметофитогенеза (в микроспорангиях) у лиственницы сибирской в северной подзоне тайги (2010 г.)

рилиасон випол					Количество на	блюдений, % о	Количество наблюдений, % от общего числа				
Стадия развития	31.03	02.04	04.04	06.04	08.04	11.04	19.04	23.04	27.04	03.05	07.05
Профаза I	98,2	6,3	€0	0,0	0,0	0,0	0,0	0,0	0,0	00	0,0
M	1,8	80,4	40,4	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
AI	0,0	13,1	41,1	6,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Телофаза I	0,0	0,2	14,7	4,9	00	0,0	0,0	0,0	0,0	0,0	0,0
Интерфаза	0,0	0,0	3,5	8,5	00	0,0	0,0	0,0	0,0	0,0	0,0
MII	0,0	0,0	0,0	11,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0
AII	0,0	0,0	0,0	25,4	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Телофаза II	0,0	0,0	0,0	9,4	1,3	0,0	0,0	0,0	0,0	0,0	0,0
Тетрады	0,0	0,0	0,0	39,7	88,5	0,0	0,0	0,0	0,0	0,0	0,0
Микроспора	0,0	0,0	0,0	00	10,2	100	7,66	30,5	0,0	0,0	0,0
Микрогаметофит:											
2-клеточный	0,0	0,0	0,0	0,0	0,0	0,0	0,3	69,5	14,3	0,2	0,0
3 . «	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	85,7	25,4	0,0
*	0,0	0,0	0,0	0,0	00	0,0	0,0	0,0	0,0	74,4	14,6
5- «	0,0	0,0	0,0	0,0	00	0,0	0,0	0,0	0,0	0,0	85,4
Примечания. 1	я. 1. Таблица	приведена в сокращенном	окращенном в	иде. 2. Число	2. Число наблюдений	по каждой да:	. дате — 1000.				

наблюдать почти все стадии мейоза, от MI до AII. Распад тетрад происходит примерно спустя 3...4 дня после их формирования. Характерной особенностью вновь образовавшихся «молодых» микроспор у лиственницы является частое локальное отставание цитоплазмы от поверхности внутренней стенки Центральная микроспоры. часть микроспоры содержит от 1 до 3 небольших ядрышек. После образования микроспор в весеннем развитии пыльцы у лиственницы наступает довольно продолжительная (от 10 до 14 дней) пауза – «интерфаза микроспоры» (см. таблицу).

В процессе микроспорогенеза, особенно в активной стадии мейоза микроспороцитов (MI-AII), можно наблюдать многочисленные нарушения нормального течения этих процессов. Нарушениям в мейозе микроспороцитов у Pinaceae, в том числе у Larix, посвящено довольно много исследований. Общее число нарушений в мейозе микроспороцитов возрастает с ужесточением следующих экологических факторов: резкое понижение температуры воздуха, атмосферное загрязнение, повышенный радиационный фон, интродукция [1, 3, 8, 9, 10]. Устойчиво высокое число нарушений в мейозе может быть обусловлено как индивидуальными особенностями деревьев, так и биологией вида [2].

В условиях северной подзоны тайги к наиболее частым нарушениям при микроспорогенезе у лиственницы относятся выбросы сом за пределы веретена деления в МІ и АІ, фрагментация хромосом

и выбросы фрагментов, нарушения в расхождении хромосом (простые и сложные мосты, отставания и неравномерное расхождение) в AI и AII, агглютинация хромосом, дефекты веретена деления, образование линейных триад и тетрад микроспор, образование пентад, гексад (рис. 3). Кроме того, для лиственницы характерны такие морфологические дефекты, как образование неразделившихся диад микроспор вследствие выпадения второго деления мейоза, разрыв экзины микроспоры и плазмолиз. Следует отметить, что, за редким исключением, невозможно точно установить какие нарушения в мейозе и каким образом приводят к тем или иным тератологическим изменениям пыльцевых зерен и стерильности пыльцы.

Начало микрогаметофитогенеза у лиственницы протекает эндогенно, внутри микроспорангия, и приводит к образованию пыльцевого зерна. Первое деление одноклеточной микроспоры является началом прорастания ее в микрогаметофит. Перед первым делением ядрышко микроспоры перемещается из

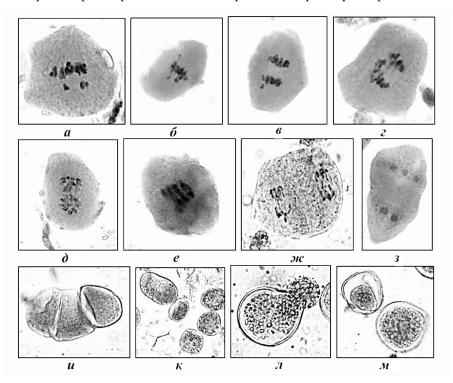
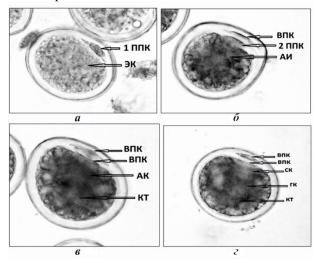



Рис. 3. Нарушения при микроспорогенезе у лиственницы: a — выбросы в MI; δ — фрагментация и выбросы фрагментов в MI; ϵ — выбросы в AI; ϵ — отставания в расхождении и агглютинация в AI; δ — неравномерное расхождение в AI; ϵ — мультипликативное веретено деления в AI; ϵ — отставания и мосты в AII; ϵ — формирование пентады; ϵ — линейные триады и тетрады; ϵ — образование диады микроспор (вверху слева) в результате выпадения второго деления; ϵ — разрыв стенки микроспоры; ϵ — плазмолиз

ее центральной части к стенке микроспоры. При описании последовательного развития одних и тех же структур микрогаметофита голосеменных разными авторами используется различная терминология [7]. В настоящей работе при описании последовательности клеточных делений мужского гаметофита у лиственницы принята терминология, приведенная в работе Д.Д. Фернандо с соавторами [12].

В результате первого деления микроспоры образуются первая первичная проталлиальная и эмбриональная клетки (рис. 4). Три последующих деления (эмбриональной клетки, антеридиальной инициали и антеридиальной клетки) приводят к образованию 5-клеточного микрогаметофита (пыльцевого зерна), состоящего из клетки трубки, генеративной и стерильной клеток и двух первичных проталлиальных клеток, которые быстро трансформируются во вторичные проталлиальные клетки, приобретают линзовидную форму и плотно прилегают к внутренней поверхности стенки гаметофита (рис. 4). Проталлиальные клетки являются рудиментарными образованиями, гомологичными заростку (проталлию) древнейших разноспоровых [6]. Клеточные деления при эндогенном микрогаметофитогенезе следуют почти непрерывно одно за другим в течение 7...10 дней. После их завершения следует небольшая (4...5 дней) пауза, во время которой в пыльцевых зернах осуществляется дальнейшее накопление крахмала и белков, происходит подсыхание стенок микроспорангиев. Пыление у лиственницы в условиях северной подзоны тайги наблюдается обычно в середине мая. У лиственницы наряду с 5-клеточными пыльцевыми зернами могут наблюдаться и внешне вполне сформировавшиеся 4-клеточные. В этом случае деление антеридиальной клетки на стерильную и генеративную, по-видимому, происходит уже при прорастании пыльцы в пыльцевую трубку, после попадания пыльцевого зерна на нуцеллус семезачатка. Следует отметить, что на последней стадии формирования пыльцевого зерна у лиственницы в ряде случаев невозможно точно идентифицировать все клеточные структуры гаметофита.

Рис. 4. Начало микрогаметофитогенеза (эндогенная стадия): a, δ , ϵ , ϵ – соответственно 2-, 3-, 4- и 5-клеточный микрогаметофит; 1 ППК – первая проталлиальная первичная клетка; 2 ППК - вторая первичная проталлиальная клетка; ВПК – вторичные проталлиальные клетки; ЭК - эмбриональная клетка; АИ – антеридиальная инициаль; АК - антеридиальная клетка; КТ клетка трубки; СК - стерильная клетка; ГК - генеративная клетка

Пыльцевые зерна лиственницы лишены воздушных мешков. Сухая пыльца обычно шаровидной формы с одним более или менее выраженным углублением. Пыльцевые зерна сферические, слегка вытянутые в направлении полюсов. Поверхность сэкзины тонко гранулированная, со слабо выраженными трехгранными следами, остающимися после распада тетрад. Кроме гранул крахмала, в зрелых пыльцевых зернах лиственницы наличествуют многочисленные, иногда довольно крупные, белковые глобулы. Размеры среднестатистического пыльцевого зерна, мкм: минимальный диаметр $-83,2\pm2,4$ (CV = 5,0 %), максимальный $-86,4\pm5,4$ (CV = 5,4 %). Для лиственницы сибирской, произрастающей на севере Архангельской области, характерны те же аномалии развития пыльцевых зерен (рис. 5), которые ранее были описаны другими авторами для видов секции Larix [2, 8, 16]. Общее число таких аномалий относительно невелико и составляет в среднем около 2,5 %, число деформированных и карликовых пыльцевых зерен – в среднем 1,7 %, гигантских (превышающих по размерам среднестатистические в 1,5-2 раза) - 0,2 %. Кроме того, в северной подзоне тайги для лиственницы характерны двойные микрогаметофиты и полиспория (0,04 %). Разрывы экзины пыльцевого зерна обычно встречаются довольно редко (0,02 %), однако в отдельные годы, при неблагоприятной динамике температур воздуха (потепление перед началом «цветения» и вслед за ним резкое похолодание), количество пыльцевых зерен с разрывами экзины может быть довольно существенным. При гидратации такой пыльцы цитоплазма может вытекать через разрывы в экзине, формируя ложные пыльцевые трубки.

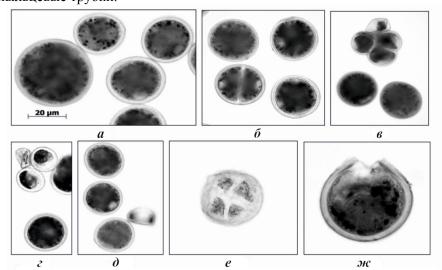


Рис. 5. Аномалии развития пыльцевых зерен у лиственницы сибирской: a – гигантское пыльцевое зерно (слева); δ – двойной микрогаметофит (слева внизу); ϵ – полиспория (вверху); ϵ – недоразвитые и деформированные пыльцевые зерна (вверху); δ , ϵ – микроспоры с прерванным циклом развития (δ – на стадии анафазы I (справа); ϵ – на стадии поздней анафазы II); κ – пыльцевое зерно с разрывом экзины

Дальнейшее развитие микрогаметофита у лиственницы происходит уже в мегаспорангии, при прорастании пыльцевой трубки, и заключается в образовании конечных продуктов микрогаметофитогенеза – двух спермиев, образующихся в результате деления генеративной клетки. Проращивание пыльцы лиственницы *in vitro* представляет значительные экспериментальные трудности. В литературе описаны лишь единичные относительно успешные опыты [11, 13, 15]. Процессы формирования пыльцевых трубок у *Larix* все еще не вполне понятны [14]. Результаты наших экспериментов по искусственному проращиванию пыльцы лиственницы подтверждают сказанное (рис. 6).

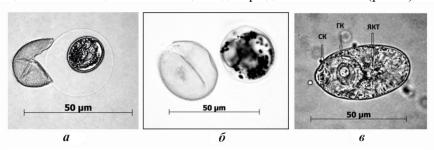


Рис. 6. Прорастание пыльцы лиственницы сибирской *in vitro*: a — механизм сбрасывания экзины; δ — пыльцевое зерно (справа) и сброшенная экзина (слева); ϵ — начало формирования пыльцевой трубки (ск — стерильная клетка; гк — генеративная клетка; якт — ядро клетки трубки)

Сбрасывание экзины происходит в результате гидратации пыльцы при образовании гидрофильной капсулы, диаметр которой намного превышает диаметр пыльцевого зерна. Под давлением стенки капсулы экзина пыльцевого зерна вскрывается узкой продольной щелью и медленно сползает с него. Иногда гидрофильная капсула не образуется. Тогда сбрасывание экзины происходит вследствие простого набухания пыльцевого зерна или экзина не сбрасывается. В последнем случае пыльца не прорастает. Несмотря на многочисленные эксперименты с разными составами сред и условиями инкубирования при проращивании *in vitro* пыльцы лиственницы, добиться формирования полноценной пыльцевой трубки не удалось. Наблюдалось лишь небольшое продольное растяжение микрогаметофита, в котором сохранялись все основные клеточные структуры, характерные для пыльцевого зерна лиственницы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бажина Е.В., Квитко О.В., Муратова Е.Н.* Мейоз при микроспорогенезе и жизнеспособность пыльцы у пихты сибирской в среднегорье Восточного Саяна // Лесоведение. 2007. № 1. С. 57–64.
 - 2. Козубов Г.М. Биология плодоношения хвойных на Севере. Л.: Наука, 1974. 135 с.
- 3. *Круклис М.В.* Развитие репродуктивных структур *Larix* Mill. // Половая репродукция хвойных. Новосибирск, 1973. Т. 1. С. 70–82.

- 4. Особенности формирования генеративных органов лиственницы сибирской и их морфогенетический потенциал / И.Н. Третьякова [и др.] // Успехи соврем. биол., 2006. Т. 126. № 5. С. 472–480.
 - 5. Паушева З.П. Практикум по цитологии растений. М.: Колос, 1970. 255 с.
- 6. Размологов В.П. К вопросу об эволюции пыльцы голосеменных растений // Бюл. ГБС. 1964. Вып. 55. С. 90–94.
- 7. Репродуктивные структуры голосеменных (сравнительное описание) / Γ .М. Козубов, В.В. Тренин, М.А. Тихова, В.П. Кондратьева. Л.: Наука. Ленингр. отд-ние, 1982. $104\ c$.
 - 8. Тренин В.В. Цитоэмбриология лиственницы. Л.: Наука, 1986. 88 с.
- 9. *Третьякова И.Н., Романова Л.И.* Особенности микроспорогенеза у лиственницы сибирской, растущей в условиях техногенной нагрузки // Онтогенез. 2005. Т. 36, № 2. С. 128-134.
- 10. Яковлев А.В. О влиянии низких температур на микроспорогенез сосны обыкновенной // Лесоведение. 1978. № 6. С. 51–55.
- 11. *Dumont-BeBoux N.*, *Anholt B.R.*, *Aderkas P.* In vitro germination of western larch pollen // Can. J. For. Res. 2000. Vol. 30, N 2. P. 329–332.
- 12. Fernando D.D., Lazzaro M.D., Owens J.N. Growth and development of conifer pollen tubes // Sex Plant Reprod. 2005. Vol. 18. P. 149–162.
- 13. Ho R.H., Rouse E.G. Pollen germination of Larix sibirica (Siberian larch) in vitro // Can. J. Bot. 1970. Vol. 48. P. 213–215.
- 14. Owens J.N., Morris C.J. Cytological basis for cytoplasmatic inheritance in *Pseudotsuga menziesii*. I. Pollen tube and archegonial development // Amer. J. Bot. 1990. Vol. 77. P. 433–445.
- 15. Said C., Villar M., Zandonella P. Ovule receptivity and pollen viability in Japanese larch (*Larix leptolepis* Gord.) // Silvae Genet. 1991. Vol. 40. P. 1–6.
- 16. *Slobodník B*. The early-spring development of male generative organs and abnormalities in pollen ontogenesis of European larch (*Larix decidua Mill.*) // For. Genet. 2002. Vol. 9, N 4. P. 309–314.
- 17. Wittman W. Aceto-iron-haematoxylin-chloralhydrate for chromosome staining // Stain. Technol. 1965. Vol. 40, N 3. P. 161–164.

Поступила 16.11.11

M.V. Surso¹, A.I. Barabin², I.N. Bolotov¹, B.Yu. Filippov²

¹RAS, Ural Branch, Institute of Ecological Problems of the North

Spring Development of Siberian Larch (*Larix sibirica* Ledeb.) Pollen in the Northern Taiga Subzone

The article presents research results of Siberian larch microsporogenesis and microgameto-phytegenesis in the northern boreal forests (taiga) subzone. Duration of discrete microsporocytes meiosis stages has been ascertained, disruptions during microsporogenesis were revealed. The microgametophytegenesis processes during pollen-grain formation are described. The pollen development abnormalities and experimental results of larch pollen sprouting *in vitro* are presented.

Key words: larch, meiosis, microsporocyte, microgametophyte, pollen.

²Northern (Arctic) Federal University named after M.V. Lomonosov