нолевая, 5, 9, 12-октадекатриеновая и октадекатетраеновая кислоты в древесине отсутствуют. Среди насыщенных жирных кислот найдены кислоты нормального и разветвленного (изо-) строения. Основными из них в лубе являются пальмитиновая, арахиновая, 12-метилтетрадекановая, стеариновая, 12-метилтридекановая, 13, 13-диметилтетрадекановая.

В древесине из ненасыщенных кислот преобладают ундеценовая, 7, 10-гексадиеновая и физотериновая, из насыщенных кислот — пальмитиновая, 12-метилтридекановая, 12-метилтетрадекановая, 13, 13-ди-

метилтетрадекановая. Арахиновой кислоты в древесине нет.

В общем состав жирных кислот луба более разнообразен, чем древесины, главным образом за счет ненасыщенных кислот C_{18} моно-, ди,- три- и тетраеновых. Исключение составляет олеиновая кислота, присутствующая как в лубе, так и в древесине, но в меньшем количестве.

ЛИТЕРАТУРА

[1]. Бардышев И. И., Крюк С. И., Ударов Б. Г. Анализ высших жирных кислот природных смол методом газожидкостной хроматографии // Хроматографический анализ в химии древесины.— Рига, 1975.— С. 112—124. [2]. Берифилд Г., Сторрс Э. Газовая хроматография в биохимии.— М., 1964.— 619 с. [3]. Накеп J. К. Retention time relationships in the gas chromatography of the methyl ethers of fatty acids // J. Chromatogr.— 1966.— Vol. 23.— Р. 375. [4]. Joye N. M., Lawrence R. V. Resin acid composition of pine oleoresins // J. Chem. Eng. Data.— 1967.— Vol. 12, N 2.— Р. 279—282. [5]. Trier J. Ancient paper of Nepal.— Copenhagen, 1972.— 271 р.

Поступила 10 декабря 1987 г.

УДК 630*813

ОПРЕДЕЛЕНИЕ ЛЕГКОГИДРОЛИЗУЕМЫХ ПОЛИСАХАРИДОВ И ПЕНТОЗАНОВ В РАСТИТЕЛЬНОМ СЫРЬЕ*

Е. Д. ГЕЛЬФАНД

Архангельский лесотехнический институт

Легкогидролизуемые полисахариды (ЛГПС) и пентозаны (П)—важнейшие компоненты растительного сырья, определяющие пригодность его для химической переработки в том или ином направлении.

Общепринятые методики их анализа длительны и трудоемки. Так, определение ЛГПС сопряжено с 3-часовым кипячением навески сырья в 2 %-й соляной кислоте с обратным холодильником [2, с. 36], а определение П—с длительным (около 2 ч) кипячением навески в 13 %-й соляной кислоте с периодическим приливанием кислоты и отгонкой [2, с. 49].

В данной работе предпринята попытка ускорить и упростить определение ЛГПС и П, а также уменьшить материальные и энергетические затраты. В основу работы положена идея быстрого, селективного растворения ЛГПС и П из навески сырья в концентрированной соляной кислоте с последующим разбавлением, инверсией и апализом инвертированного раствора.

Предварительно нами установлено, что полное растворение ЛГПС и П из навески сырья достигается в концентрированной соляной кисло-

^{*} Экспериментальная часть выполнена студенткой Т. Таракановой.

те (35...36 %-й) при комнатной температуре в течение 20 мин. Для полного завершения инверсии полученного раствора (после разбавления его водой) достаточно также 20 мин при 100 °С. Все это дает возможность сократить 3-часовую операцию в стандартной методике определения ЛГПС до 20 мин.

Дальнейшие операции сводятся к определению моноз и пентоз в инвертированном растворе; первые из них определяют эбулиостатическим титрованием, т. е. так же, как в [2, с. 42], а вторые — с использованием методики, предложенной нами ранее [1] и основанной на дегидратации пентоз до фурфурола. Важнейшие особенности методики, обеспечивающие быстроту определения П: а) смешение аликвотной части раствора пентоз с определенным количеством концентрированной серной кислоты; б) использование эбулиостата в качестве реактора. В результате на анализ пентоз затрачивается около 20 мин.

Методика. Навеску растительного сырья, измельченного до размера опилок (фракция до 1 мм), около 0,4500 . . . 0,5000 г с помощью пробирки для взвешивания вводят на дно мерной колбы вместимостью 100 мл. В колбу с помощью мерной пипетки, опустив ее почти до дна, вливают порциями (с целью равномерного смачивания опилок) 10 мл концентрированной соляной кислоты (35...36 %-й), и смесь выдерживают 20 мин без перемешивания. Затем в колбу вливают порциями, при перемешивании, 50 мл дистиллированной воды, 5 мл 33 %-го раствора гидроксида натрия, доводят дистиллированной водой до метки и еще раз тщательно перемешивают.

Содержимое мерной колбы выливают в коническую колбу на 250 мл, присоединяют к обратному холодильнику и кипятят 20 мин, затем охлаждают до комнатной температуры и фильтруют; часть фильтрата используют для эбулиостатического титрования [2, с. 36] с целью определения ЛГПС, а часть — для определения П. Для этого 5 мл фильтрата* помещают во внутренний сосуд эбулиостата и далее проводят все операции, как в работе [1].

Содержание ЛГПС, % к навеске абс. сухого сырья, рассчитывают по формуле:

$$\label{eq:energy} \text{JI}\Gamma\Pi\text{C} = \frac{\textit{T}\cdot 100\cdot 100\cdot 0.89}{\textit{1}\;000\textit{a}\textit{H}\,(\textit{I}-0.01\,\textit{W}\,)}\,,$$

где T — титр медно-щелочного раствора по глюкозе, мг;

1 000 — число мг в 1 г;

100 — объем фильтрата, мл;

а — расход фильтрата на титрование медно-щелочного раствора,
мл:

H — навеска сырья, Γ ;

100 — коэффициент перевода, %;

0.89 — коэффициент для пересчета моносахаридов в полисахариды; W — влажность сырья, $\frac{9}{10}$.

Содержание пентозанов (Π), % к навеске абс. сухого сырья, определяют из выражения:

$$\Pi = \frac{(a-b)\,0.00048\cdot 100\cdot 100}{0.55\cdot 5H\,(1-0.01W)},$$

где a, b — расход 0,01 н. раствора тиосульфата в холостом и рабочем титрованиях, мл;

0,00048 — масса фурфурола, эквивалентная 1 мл 0,01 н. раствора тиосульфата, г;

^{*} Можно брать на анализ П раствор и до инверсии.

- 0,55 удельный выход фурфурола по отношению к пентозанам в условиях данной методики;
 - 5 объем фильтрата, взятый на анализ, мл.

В таблице приведены результаты анализов 7 образцов опилок различных древесных пород по испытуемой и общепринятой методикам. Из сравнения можно сделать вывод, что испытуемые методики обеспечивают в основном удовлетворительную точность анализов; это свидетельствует о правильности подхода к совершенствованию методик.

Порода дре- весных опилок	Содержание ЛГПС, %, по методике		Отно- ситель-	Содержа- ние П, %, по методике		Отно- ситель-
	обще- прн- нятой	испы- туе- мой	ное расхож- дение, %	обще- при- нятой	испы- туе- мой	ное расхож- дение, %
Сосна « Кедр Пихта Лиственинца Ель Береза Осина	16,8 18,9 16,2 20,8 16,6 26,2 23,3	16,7 16,9 15,7 20,8 16,5 25,5 23,3	0,6 10,6 3,1 0,0 0,6 2,6 0,0	12,3 7,45 10,2 14,4 9,2 21,6 19,7	12,3 7,45 10,0 14,4 8,9 21,8 19,6	0,0 0,0 1,9 0,0 3,2 0,9 0,5

При определении ЛГПС описанными методиками удалось сократить продолжительность кипячения с 3 ч до 20 мин, т. е. в 6 раз; соответственно в 6 раз уменьшились затраты энергии (на 1,5 кВт \cdot ч) и воды на обратный холодильник. При определении П экономия по этим же показателям — в 4—5 раз.

ЛИТЕРАТУРА

[1]. Гельфанд Е. Д. Методика определения концентрации пентоз в гидролизных средах // Гидролиз. и лесохим. пром-сть.—1987.—№ 4.— С. 23—24. [2]. Емельянова И. З. Химико-технический контроль гидролизных производств.— М.: Лесн. пром-сть, 1969.—366 с.

Поступила 18 декабря 1987 г.

УДК 676.2:537.213

ИССЛЕДОВАНИЕ ФАКТОРОВ ПРОЦЕССА УДЕРЖАНИЯ КАТИОННОЙ ПАРАФИНОВОЙ ДИСПЕРСИИ БУМАЖНОЙ МАССОЙ

П. Ф. ВАЛЕНДО

Белорусский технологический институт

Катионные проклеивающие составы представляют большой интерес для целлюлозно-бумажной промышленности, так как при их использовании проклейку в массе можно осуществить в нейтрально-щелочной среде [2, 3]. Важной проблемой как с технологической, так и с экономической точки зрения является выявление условий максимального удержания проклеивающих веществ целлюлозными волокнами [6].

В настоящей статье приведены результаты экспериментальных исследований по изучению ряда факторов, которые влияют на степень удержания катионных проклеивающих дисперсий бумажной массой.

Для проведения эксперимента использовали беленую сульфитную целлюлозу марки AC-0 и катионную парафиновую дисперсию, полученную ультразвуковым способом. В качестве стабилизатора дисперсии применяли катионное поверхностно-активное вещество (ΠAB) — алкилдиметилбензиламмонийхлорид (алкил C_1 — C_2 0) с массовым содержанием 1 % от абс. сухого парафина. Степень удержания дисперсии