Таблица 2

рН вароч- ного раст- вора	Разрыв- ная дли- на, м	Сопро- тивление продав- ливанию, кПа	Сопро- тивление раздира- нию, мН	ивление тивление разди издира- излому, ния		Индекс разры- ва, Н·м/г	Обобщен- ный ин- декс прочно- сти	
8.5	8100	300	410	500	79,1	5,46	432,4	
8.0	8700	340	460	1110	82,7	6,13	507,2	
7,5	9500	340	490	1140	86.5	6,40	553,6	
7.0	9400	350	510	840	91,5	6,80	622,0	
6.5	9700	310	530	1040	92,3	7,06	651,0	

В табл. 2 представлены физико-механические показатели данных образцов целлюлозы при степени помола 60 °ШР и массе 1 м² 75 г.

Как видно из данных табл. 2, прочностные показатели целлюлозы улучшаются при снижении рН варочного раствора, что наглядно видно по значениям обобщенного индекса прочности, который является произведением индексов разрыва и раздирания.

Выводы

- 1. В исследованном диапазоне рН варочного раствора увеличение его ускоряет делигнификацию, но усиливает деградацию полисахаридов.
- 2. Выход и вязкость целлюлозы получаются максимальными при поддержании рН варочного раствора от 7,0 до 7,5, что говорит о стабилизации полисахаридов в этих условиях.
- 3. Прочностные свойства целлюлозы улучшаются при снижении щелочности варочного раствора.
- 4. С точки зрения продолжительности и селективности делигнификации, а также получения качественной целлюлозы оптимальным является проведение варки при рН 7,0...7,5.

СПИСОК ЛИТЕРАТУРЫ

[1]. Fujii I. S., Hannah M. A. Oxygen pulping of Hardwoods//TAPPI.—1978.—V. 61.—P. 37—40. [2]. Jamieson A. G., Samuelson O., Smedman L. A. Oxygen-sodium bicarbonate pulping of white birch // TAPPI.—1975.—V. 58, N 2.—P. 68—71. [3]. Minor A. G., Sanyer J. Oxygen pulping of shortleaf pine with sodium carbonate // TAPPI.—1975.—V. 58, N 3.—P. 116—119. [4]. Sarkanen K. V., Johanson L. N. Use of oxygen in pulping // AUCH Symp. Ser.—1976.—V. 72, N 157.—P. 50—52.

Поступила 12 апреля 1993 г.

УДК 676.163.5

ПОЛУЧЕНИЕ НЕБЕЛЕНОЙ СУЛЬФИТНОЙ ЦЕЛЛЮЛОЗЫ ИЗ ДРЕВЕСИНЫ СОСНЫ

3. А. КОРЖИЦКАЯ, Л. В. ГОЛУБЕВА, М. А. КОРЖОВА Институт леса ҚарНЦ РАН

В связи с истощением лесных ресурсов в европейской части России, особенно на северо-западе, где расположено много целлюлозно-бумажных предприятий, стоит вопрос о расширении сырьевой базы за счет вовлечения нетрадиционных видов сырья, например тонкомерной древесины от рубок ухода [1]. Ежегодно в европейской части страны можно заготавливать до 30 млн м³ тонкомерной древесины, в том числе около 10 млн м³ хвойной, в основном сосны [3].

Ранее проведенными исследованиями [2] доказана возможность использования тонкомерной древесины от рубок ухода в производстве

целлюлозы для различных видов бумаги. Показано, что молодая сосна не содержит ядра, имеет меньшее содержание смолы, чем спелая, успешно делигнифицируется по сульфитному методу, но вызывает «смоляные» затруднения.

Обычно в производстве сульфитной целлюлозы проблема обессмоливания решается путем применения поверхностно-активных веществ или окисления гипохлоритом или диоксидом хлора, что ведет к образованию хлорорганических веществ, увеличению токсичности сточных вод,

загрязнению окружающей среды.

Цель работы — получить сульфитную целлюлозу из тонкомерной древесины сосны от рубок ухода с невысоким содержанием смол и жиров, а также белизной, достаточной для выпуска массовых видов бумаги без применения хлорсодержащих химикатов при минимальных

выбросах сточных вод.

Исследована древесина сосны в возрасте рубок прореживания (30 лет) и для сравнения — ели. Определена ее макроструктура, плотность и химический состав. Как видно из табл. 1, плотность древесины сосны незначительно превышает плотность ели. Содержание лигнина практически одинаково, целлюлозы — несколько ниже, а смолы — выше в сосне, чем в ели. Углеводный состав древесины этих пород близок.

. Таблица 1

Показателн	Численные значе- ния показателей			
110kasa tesik	Сосна	Ель		
Возраст, лет	30	43		
Высота дерева, м	5.4	9.4		
Диаметр в коре см	5.9	11.9		
Процент поздней древесины	27.8	27.0		
Плотность, кг/м3	414	390		
Химический состав, %:] 717	***		
а) вещества, экстрагируе-	l	į		
мые спиртобензолом	2,98	1.93		
б) зола	0.35	0.32		
в) целлюлоза по Кюрш-				
неру	48,30	50,85		
г) лигнин	27,30	27.04		
д) полисахариды по РВ	73,50	71,31		
е) моносахариды в пере-	ļ			
счете на полисахари-	Į	{		
ды:				
галактоза	2,80	2,61		
• глюкоза	48,70	48,64		
манноза	11.37	9,90		
арабиноза	2,69	1,84		
ксилоза	· 7,78	7,95		

Примечание Диаметр в коре, процент поздней древесины и плотность замерены на высоте 1,3 м.

Сульфитные варки проводили со щепой, полученной в лабораторных и промышленных условиях, с кислотой на натриевом основании $(0,80\dots1,06\ \%$ связанного SO_2 ; $5,0\dots7,7\ \%$ всего SO_2) по следующему режиму: подъем температуры до $110\ ^{\circ}\text{C} — 105\$ мин, пропитка при $110\ ^{\circ}\text{C} — 90\$ мин, подъем температуры до $140\ ^{\circ}\text{C} — 90\$ мин, варка при конечной температуре — от $60\$ до $140\$ мин. Модуль варки 1:5. Для варок применяли щепу из свежесрубленной и подсушенной при комнатной температуре до воздушно-сухого состояния и хранившейся $1\dots3$ месяца древесины.

Надо отметить, что молодая сосна хорошо делигнифицируется по сульфитному методу, непровар в основном обусловлен наличием сучков. Как известно, тонкомерная древесина содержит в 2—3 раза больше сучков, чем спелая. Это создает определенные трудности при переработке. Сравнительные варки, проведенные в одинаковых условиях (6,94 % общего SO₂; 0,86 % связанного SO₂, продолжительность варки при конечной температуре 140 мин), показали, что из древесины сосны получена целлюлоза с меньшим содержанием лигнина и большей белизной (табл. 2). Содержание смолы в целлюлозе отличалось незначительно. Сравнительная характеристика целлюлозы из сосны и ели, сваренной до одинаковой массовой концентрации лигнина, представлена в табл. 3. Механическая прочность целлюлозы при 60 °ШР и массе 1 м² 75 г примерно одинакова, за исключением несколько большего сопротивления раздиранию целлюлозы из ели. Что касается углеводного состава, то сосновая целлюлоза содержала меньше глюкозы, но больше маннозы и ксилозы.

Таблица 2

Показатели. %	Численные значе- ния показателей				
показатели, %	Сосна	Ель			
Выход Лигнин Белизна Смолы и жиры	44.80 0,95 66,10 0,83	45,40 1,40 62,50 0,86			

Примечание. Для древесины сосны варок № 31, 32; для ели варок № 33, 34.

Таблица 3

Показатели	Численные значе- ния показателей			
110Ra341EAIN	Сосна	Ель		
Выход, % Степень делигнификации, ед. Каппа Лигнин, % Белизна, % Смолы и жиры, % Механическая прочность: а) разрывная длина, м б) сопротивление: продавливанию, кПа излому, ч. д. п.	47.6 19.2 3.3 58.6 0,96 10 040 540 3 860	47,9 19,1 3,3 57,5 0,86 9 840 605 3 700		
раздиранию, мН Моносахариды в пересчете на поли- сахариды, % к обессмоленной цел- люлозе: глюкоза манноза ксилоза	82,59 8,70 7,84	700 86,07 7,52 5,65		

Примечание Для древесины сосны варок № 25, 26; для ели варок № 44, 45.

Древесина тонкомерной сосны отличается лучшей делигнификацией. При одинаковых условиях варки из молодой сосны получена целлюлоза с меньшим содержанием лигнина (0,95 против 1,40 %) и большей белизной (66,1 против 62,5 %). Образцы сосны и ели близки по

плотности и химическому составу. Очевидно, различие может быть обусловлено морфологическими особенностями волокон.

Для снижения содержания смолы, которое в целлюлозе из свежесрубленной древесины сосны достигает $1,7\dots 2,0$ %, проведено обессмоливание путем обработки щелочью (NaOH) при повышенной температуре. Для уменьшения количества сточных вод массу отжимали, далее обрабатывали перекисью водорода H_2O_2 , кислотой и промывали. В результате содержание общей смолы снизилось почти вдвое (на $47,3\dots 49,4$ %) при некотором уменьшении массовой концентрации лигнина и повышении белизны (табл. 4).

Таблица 4

Древесина	Вы- ход, %	Сте- пень делиг- нифи- кации, ед. Каппа	Лиг- нин, %	Смолы и жи- ры, %	Сни- жение массо- вой доли смо- лы, %	Бе- лиз- на, %
Свежесрубленная: необработанная обработанная $NaOH + H_2O_2 + H_2SO_3$ Выдержанная: необработанная	98,0	17,5 13,9 23,8	3.0 2.4 4.0	1,70 0,86 1,10	— 49,4 —	58,6 60,5 56,2
обработанная: NaOH $+$ $H_2O_2+H_2SO_3$ MnSO $_4$	97,8 98,6	18.8 22.8	3.2 3,9	0,58 1.07	47,3 2,7	59,0 56,8

Примечание. Для свежесрубленной древесины варки № 11; для выдержанной варок № 23, 24.

Наряду с перекисно-щелочной обработкой, проводили обработку целлюлозы MnSO₄, которая практически не повлияла на общее содержание лигнина, смолы и белизну. Опыты носили поисковый характер, но они показали возможность значительного снижения содержания смолы в сосновой целлюлозе при некотором повышении белизны и мягком делигнифицирующем действии обработки.

Сточные воды содержали щелочь и смолу. Особенно загрязненными являются стоки после ступени щелочения, сброс их нецелесообразен из-за потерь щелочи. Была предпринята попытка использовать эти воды после добавки необходимого количества щелочи и насыщения SO_2 для приготовления варочного раствора при сульфитной варке тонкомерной сосны. Полученная целлюлоза сравнима с целлюлозой, сваренной на обычной кислоте. Экономия щелочи составила 20...30 %.

Результаты проведенных исследований подтвердили возможность получения из молодой сосны путем сульфитной варки и обессмоливания щелочью и перекисью водорода целлюлозы с невысоким содержанием смолы и белизной, достаточной для массового вида бумаг. Показаны некоторые преимущества ее по сравнению с еловой, что позволяет заменить дефицитную еловую древесину в производстве сульфитной целлюлозы и отказаться от использования хлорсодержащих реагентов.

СПИСОК ЛИТЕРАТУРЫ

[1]. Гейзлер П. С., Некрасов М. Д. Рубки ухода—как повысить их рентабельность // Лесн. пром-сть.—1975.—№ 11.—С. 20—21. [2]. Гелес И. С. и др. Характеристика тонкомерной древесины как сырья для целлюлозно-бумажной промышленности // Проблемы комплексного использования древесного сырья.—Петрозаводск, 1981.—С. 5—58. [3]. Молотков Л. К. Использование в ЦБП отходов древесины лесозаготовок и от рубок ухода за лесом // Целлюлоза, бумага, картон: Обзорн. информация / ВНИПИЭИлеспром.—1987.—Вып. 9.—44 с.