УДК 630*813.11

НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ВОДНЫХ РАСТВОРОВ ПРОМЫШЛЕННЫХ ЛИГНОСУЛЬФОНАТОВ

В. В. НЕКРАСОВ, В. В. ДОБРЫНИНА, С. П. АРТЮХОВ, Л. В. ФИЛИМОНЕНКОВА, Ю. В. ЛОГИНОВ, Л. Ф. ТРЕНИНА

Архангельский лесотехнический институт

В целях более полного выявления свойств промышленных лигносульфонатов (ЛСТ) нами был проведен комплекс исследований физических свойств его водных растворов. ЛСТ отобран в выпарном цехе Архангельского ЦБК с физико-химическими показателями ОСТ 13 — № 18383. В качестве образцов взяты растворы с содержанием ЛСТ от 0,88 до 50 %. В интервале температур 20 . . . 65 °C (в отдельных случаях до 100 °C) изучены следующие параметры: плотность р, показатель преломления n, скорость распространения ультразвука (V3) v, коэффициент теплопроводности λ , теплоемкость c_p , коэффициент вязкости η .

Плотность растворов ЛСТ определяли с помощью ареометра. При каждой данной температуре параллельно измеряли плотность воды и раствора ЛСТ. Затем по известной плотности воды рассчитывали плотность раствора. Показатель преломления растворов определяли рефрактометром РПЛ-3. В качестве источника света использовали газовый лазер с длиной волны $\lambda = 650$ нм.

Скорость распространения ультразвука определяли на незначительно видоизмененной установке, описанной в работах [3, 4]; точность составляла 0,5 %. Измерения проводили на частоте 1,8 МГц.

Теплофизические параметры определяли двумя методами: с помощью кондуктивного микрокалориметра [2] и методом двух температурно-временных интервалов [1]. Последний метод позволяет одновременно измерять коэффициенты теплопроводности, температуропроводности, удельной теплоемкости и тепловую активность раствора. Определение теплоемкости образцов двумя методами позволило исключить значительные погрешности. Вязкость растворов ЛСТ исследовали с помощью вискозиметра Хепплера прецезионного типа.

Результаты представлены в табл. 1-6.

Таблица 1

Тем- пера-	Плотность растворов р, кг/м³, с содержанием ЛСТ, %									
тура t, °C	0	10	29	30	34	39	42	46	50	
20 25 45 65	999 994 990 900	1 038 1 035 1 030 1 020	1 083 1 078 1 073 1 064	1 130 1 125 1 120 1 110	1 151 1 144 1 138 1 120	1 177 1 168 1 163 1 158	1 193 1 185 1 177 1 168	1 215 1 205 1 197 1 188	1 234 1 230 1 218 2 100	
•	•							` 0 5 7 77 77	. 0	

Таблица 2

Содержание ЛСТ С, %	0,88	0,96	2,24	4,60	6,90	7,10	10	20
Показатель преломления <i>п</i> (при 18°C)	1,327	1,328	1,330	1,334	1,338	1,340	1,347	1,365

На основании данных, приведенных в табл. 1—6, можно сделать следующие выводы.

1. Плотность в изотермических условиях монотонно возрастает с ростом содержания ЛСТ в растворе (табл. 1). Для данного содержания ЛСТ плотность раствора убывает с ростом температуры по линейному закону (табл. 1).

2. Зависимости показателя преломления растворов от температуры n = f(T) и

содержания ЛСТ n = f(C) подчиняются линейному закону (табл. 2, 3).

3. В изотермических условиях скорость УЗ линейно возрастает с повышением содержания ЛСТ в растворе (табл. 4). С повышением температуры при данном содержании ЛСТ в растворе скорость УЗ монотонно возрастает, однако по мере роста

Таблица 3

Темпера-	Показател	ь преломлен	ния п при с	одержании	ЛСТ в рас	творах, %
тура 't, °C	2,1	5,3	8,7	10	13	20
37 45 65 90 100	1,320 1,318 1,315 1,310 1,309	1,326 1,325 1,322 1,318 1,315	1,335 1,334 1,239 1,327 1,324	1,340 1,336 1,336 1,334 1,330	1,344 1,344 1,340 1,336 1,335	1,355 1,350 1,350 1,348 1,345

Таблица 4

Тем- пера-	Скоро	сть расп	ростран	ения УЗ в рас	υ·10- створах,	3 _{, м/с,}	при сод	ержани	лСТ
тура <i>t</i> , °С	0	10	20	30	34	39	42	46	50
20 25 45 65	1,49 1,50 1,52 1,54	1,53 1,54 1,55 1,57	1,57 1,58 1,59 1,61	1,62 1,62 1,63 1,64	1,63 1,63 1,64 1,65	1,65 1,65 1,66 1,66	1,67 1,67 1,67 1,68	1,68 1,68 1,68 1,69	1,70 1,70 1,70 1,70

Таблица 5

Теплофизическая	Численное значение характеристики (в интервале температур 25 ± 3 °C) при содержании ЛСТ в растворах, %									
характеристика	0	5	10	20	30	39.	46	50		
$a \cdot 10^{-7}, \frac{M^2}{c}$	1,71	1,64	1,31	1,27	1,42	1,15	1,14	1,03		
$\lambda, \frac{B\tau}{M \cdot K}$	0,632	0,642	0,573	0,558	0,605	0,460	0,459	0,386		
b·10 ⁻³	1,73	1,58	1,58	1,57	1,61	1,36	1,36	1,20		
$c_{\rm p} \cdot 10^{-3}$, $\frac{Дж}{{\rm Kr} \cdot {\rm K}}$	4,190	3,830	4,210	3,910	3,708	3,420	3,320	3,209		

Таблица

Зависимость вязкости растворов от содержания ЛСТ и температуры

	`	Коэффициент вязкости $\eta \cdot 10^3$, Па · с, при содержании ЛСТ, %								
t, °C	Т, Қ	10	20	30	3,4	42	50			
20 30 40 45	293 303 313 321	1,42 1,09 0,903	2,87 2,25 1,81	6,30 4,70 3,50	25,3 15,9 10,8	244 108 60,2	6 980 1 960 584 393			
50 60 64 70	323 333 337 343	0,750 0,634 0,542	1,48 1,28	2,75 2,26 1,89	7,50 5,69 4,26	34,0 23,0 16,4	108			

концентрации это возрастание становилось все менее заметным и в 50 %-м растворе скорость в пределах ошибки опыта оставалась постоянной и равной 1,70 103 м/с

(табл. 4). 4. Величина теплоемкости c_p линейно понижается с ростом содержания ЛСТ в

растворе (табл. 5). Измерения проводили при $t=25\pm3$ °C. 5. Коэффициенты теплопроводности, температуропроводности и тепловой активности монотонно убывают с ростом содержания ЛСТ в растворе (табл. 5): 6. Для растворов с содержанием ЛСТ $10\dots50$ % наблюдается линейная зависимость $\ln \ln \eta = f(C)$. Зависимость $\ln \eta = f(\frac{1}{T})$ представляет собой серию прямых с различным наклоном, что указывает на зависимость энергии активации вязкого течения от содержания ЛСТ в растворах (табл. 6).

ЛИТЕРАТУРА

[1]. Волькенштейн В. С. Скоростной метод определения теплофизических характеристик материалов.— Л.: Энергия, 1971. [2]. Дивин Н. П., Иванов Г. А. Калориметр для физических лабораторий // Тез. докл.: 2-е зональное научно-исследоват. совещание зав. кафедрами физики и ведущих лекторов по физике в вузах Сев.-Зап. зоны.— Л., 1978, с. 95—96. [3]. Некрасов В. В. О сольватации лигнина в растворах диоксана // Лесн. журн.— 1973.— № 1.— С. 168—170.— (Изв. высш. учеб. заведений). [4]. Некрасов В. В., Соколов О. М., Боховкин И. М. О сольватации сульфатного лигнина в некоторых органических растворителях // Лесн. журн.— 1975.— № 2.— С. 114—117.— (Изв. высш. учеб. заведений).

УДК 676.1.022.1

ВЛИЯНИЕ ПОВЕРХНОСТНО-АКТИВНОЙ ДОБАВКИ НА ПРОЦЕСС ЩЕЛОЧНОЙ ДЕЛИГНИФИКАЦИИ ЛИСТВЕННОЙ СУЛЬФАТНОЙ ЦЕЛЛЮЛОЗЫ

Н. Е. РИХТЕР, Л. П. БИЧЕВАЯ, М. Н. КОКОРИНА, А. А. ЛЕОНОВИЧ Ленинградская лесотехническая академия

Увеличение доли древесины лиственных пород в производстве целлюлозы обострило проблему «вредной» смолы. Снизить ее содержание можно технологическими мерами — сортированием, промывкой, использованием вспомогательных химических веществ: поверхностно-активных (ПАВ), комплексообразующих, диспергаторов на основе ПАВ и др. Лесохимические продукты пиролиза древесины — растворимая смола и ее нейтрализованные продукты — повышают выход целлюлозы в процессах щелочной варки [2].

В настоящей статье изложены результаты исследования сульфатной варки целлюлозы с поверхностно-активной добавкой ЛХД, являющейся товарным продуктом.

Использовали щепу березы и варочный белый щелок сульфатного завода № 2 Светогорского ЦБК, талловое масло сульфатного завода № 1 с содержанием смоляных кислот 38,0, жирных кислот 45,5 %. Добавка ЛХД Моломского лесохимического завода соответствовала ТУ 13—4000177—128—84. Перед варкой заданное количество ЛХД. смешивали со щелоком.

Варки проводили по режиму: подъем температуры до 80 °С и прогрев автоклава — 45 мин, подъем до 140 °С — 70 мин, стоянка — 60 мин, подъем до 153 °С — 70 мин, стоянка — 145 мин; концентрация NaOH — 28 г/л. Целлюлозу промывали щелочью (концентрация NaOH — 5 г/л). Кислородно-щелочную отбелку (КЩО) проводили по режиму: расход NaOH — 3 % от массы волокна при температуре 110 °С, давлении кислорода 0,5 МПа в течение 60 мин. Образцы анализировали с определением жесткости (ГОСТ 10070—74), степени полимеризации (ГОСТ 25438—82). Смолистые вещества определяли в целлюлозной массе экстрагированием этанолом и эфиром в аппарате 9-8.

Добавка ПАВ в количестве 1 % при варке с модулем 1:8 улучшает показатели целлюлозы по сравнению с контролем в случае как ЛХД, так и таллового масла

Таблица 1 Характеристика целлюлозы небеленой и после КЩО, полученной с двумя добавками

Побавка	Жест- кость, п. е.	Остаточ- ная ще- лочность, г/л	Степень полиме- ризации
лх,	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c} 3,36 \pm 0,30 \\ \hline 0,82 \pm 0,10 \end{array} $	1 600 ± 100
Талловое масло	$\frac{19.7 \pm 1.0}{8.2 \pm 0.4}$	$\frac{2,72 \pm 0,30}{0,56 \pm 0,10}$	1 300 ± 100
Контроль	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 2.84 \pm 0.30 \\ \hline 0.84 \pm 0.10 \end{array}$	1 100 ± 100

Примечание. В числителе приведены данные для небеленой целлюлозы; в знаменателе — после КЩО.