УДК 628.395: [635. 054 /. 055: 54-43]

О.А. Неверова, Е.Ю. Колмогорова

Неверова Ольга Александровна родилась в 1959 г., окончила в 1981 г. Кемеровский государственный университет, кандидат биологических наук, доцент кафедры биохимии и микробиологии Кемеровского технологического института пищевой промышленности, руководитель группы биоиндикации окружающей среды Кузбасского ботанического сада (филиала ЦСБС СО РАН). Имеет около 40 печатных работ по проблеме биоэкологической оценки загрязнения окружающей среды и состояния наземных экосистем в Кузбассе.

Колмогорова Елена Юрьевна родилась в 1974 г., окончила в 1996 г. Кемеровский государственный университет, инженер Кузбасского ботанического сада (филиала ЦСБС СО РАН), аспирант Кемеровского технологического института пищевой промышленности. Имеет 2 научные статьи в области разработки основных принципов развития зеленого фонда г. Кемерово как важного фактора оздоровления городской среды.

КСЕРОФИТИЗАЦИЯ ЛИСТЬЕВ ДРЕВЕСНЫХ РАСТЕНИЙ КАК ПОКАЗАТЕЛЬ ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА (НА ПРИМЕРЕ г. КЕМЕРОВО)

Установлено соответствие уровней загрязнения атмосферы города промышленными выбросами и степени изменения ряда анатомических характеристик. Сделан вывод о возможности использования данных показателей для индикации загрязнения воздуха и его влиянии на древесные растения.

древесные растения, липа мелколистная, рябина сибирская, ксерофитизация, фито-индикация, загрязнение атмосферного воздуха.

Экологическая ситуация в г. Кемерово – крупном промышленном центре – сохраняется напряженной, несмотря на общее сокращение производства. Котловинное положение города с открытым выходом только на северо-запад при господствующих юго-западных ветрах, повторяемости слабых ветров (20 ... 40 %) и приземных инверсий (30 ... 45 %) определяет повышенный уровень загрязнения атмосферы. От стационарных источников загрязнения в атмосферу поступает 63,491 тыс. т (57,5 %) токсических веществ. В основном это выбросы предприятий энергетики (73,0 %), химической и нефтехимической промышленности (4,7 %), черной металлургии (7,8 %). К ним относятся диоксид азота (1,0 ПДК), формальдегид (4,33 ПДК), аммиак (2,0 ПДК), сероуглерод (1,0 ПДК), бензпирен (4,62 ПДК), фенол (0,66 ПДК) [5].

Общеизвестно, что действие токсических выбросов предприятий и транспорта опасно не только для населения, но и для зеленых насаждений, которые вследствие угнетения и повреждения ассимиляционных органов и крон имеют пониженную декоративность и не выполняют в полной мере экологических функций. Если для человека качество атмосферного воздуха регламентируют санитарно-гигиенические ПДК ингредиентов, то для зеленых насаждений они еще только разрабатываются. Учитывая высокую чувствительность растений к многим промышленным газам [1, 2, 4], можно обоснованно связывать плохое состояние зеленых насаждений города с характером загрязнения воздуха.

Ксерофитизация листьев в условиях промышленного загрязнения проявляется в уменьшении их размеров и числа на годичных побегах, утолщении листовой пластинки, увеличении числа устьиц на $1\,\mathrm{mm}^2$ поверхности листа, уменьшении размеров клеток всех тканей листа. Наиболее удобным методом регистрации этих изменений у листьев растений является подсчет числа устьиц на $1\,\mathrm{mm}^2$ поверхности [3].

Цель настоящей работы – исследовать влияние промышленных газов на некоторые анатомические показатели устьичного аппарата листьев древесных растений; выяснить степень зависимости исследуемых показателей у древесных растений от уровней загрязнения районов г. Кемерово; оценить возможность использования анатомических показателей состояния ассимиляционного аппарата древесных растений для индикации загрязнения воздуха и степени его влияния на древесные растения.

Объектом исследования служили лиственные породы — рябина сибирская и липа мелколистная, характеризующиеся высокой декоративностью и широко используемые в озеленении г. Кемерово. Возраст древесных растений составлял 30 ... 50 лет. Пробы растительных образцов отбирали в июле 1999–2000 гг.

Пробные площади были заложены на территории пяти существующих районов города — Ленинского, Центрального, Заводского, Кировского, Рудничного. В каждом районе исследовали растения парковых и магистральных посадок. Контрольные деревья произрастали на фоновых участках, расположенных в 30-километровой зоне северо-восточного направления от городской черты.

В качестве анатомической характеристики ассимиляционного аппарата использовали число устьиц на 1 мм² листовой поверхности и степень их открытости, которые определяли с помощью микроскопа и осветителя отраженного света ОИ-21. Исследования проводили в зимнее время на высушенных образцах, размоченных в воде в течение 24 ч.

Проведенные нами исследования показали, что в условиях города у липы мелколистной и рябины сибирской наблюдается увеличение общего числа устьиц на $1~{\rm mm}^2$, а также процента закрытых. Отмечены различия в степени изменений изучаемых признаков у деревьев различных видов, а также у деревьев магистральных и парковых посадок. В городской среде число устьиц на $1{\rm mm}^2$ поверхности листьев больше у липы мелколистной,

Анатомические показатели листьев (средние данные за 1999–2000 гг.)	,
------------------------------------	----------------------------------	---

n. v	Число устьиц на 1мм ²				
Район	общее, шт.*	открытых, %	закрытых, %		
Липа мелколистная					
Контроль	108,0	83,8	16,2		
Магистральные посадки					
Ленинский	214,4	64,7	35,3		
Центральный	220,7	52,7	47,3		
Заводский	244,4	44,2	55,8		
Кировский	254,3	46,2	53,8		
Парковые посадки					
Ленинский	205,0	74,7	25,3		
Центральный	221,6	72,7	27,3		
Заводский	228,5	64,2	35,8		
Кировский	235,7	56,2	43,8		
Рябина сибирская					
Контроль	169,6	54,0	46,0		
Магистральные посадки					
Ленинский	228,5	44,7	55,3		
Центральный	236,7	32,7	67,3		
Заводский	244,1	34,2	65,8		
Рудничный	241,8	26,2	73,8		
Парковые посадки					
Ленинский	219,6	54,7	45,3		
Центральный	236,3	52,7	47,3		
Заводский	234,5	44,2	55,8		
Кировский	244,4	46,2	53,8		
Рудничный	242,3	45,6	54,4		

^{*} Отмечены достоверные отличия от контроля при $P_{0.95}$.

чем у рябины сибирской. У липы мелколистной оно увеличивается в магистральных посадках на 99 ... 135, в парковых на 90 ... 118 %, причем максимально в Заводском и Кировском районах (соответственно на 112 и 118 % в парковых и 126 и 135 % в магистральных посадках) — см. таблицу. В Рудничном районе не произрастает.

У рябины сибирской в условиях городской среды увеличение числа устьиц на 1мм² поверхности листьев выражено меньше, чем у липы, хотя различия с контролем достоверны. В целом по городу оно составило 29,5 ... 44,0 %. Различия этого показателя в парковых и магистральных посадках несущественны (см. таблицу). Максимально оно на поверхности листьев рябины Заводского, Рудничного и Кировского районов: в магистральных посадках Заводского и Рудничного районов превышение над контролем составляет соответственно 44,0 и 42,5 %, в парковых посадках Рудничного и Кировского районов 44,1 и 42,9 %.

По данным В.С. Николаевского [3], ксерофитизация ассимиляционных органов растений вызвана подавлением фазы растяжения клеток из-за недостатка ассимилятов (ингибирование фотосинтеза) и возможного нару-

шения гормональной регуляции роста. Поэтому листья на загрязненных территориях мелкие, у них мельче клетки тканей и больше устьиц на 1мм² поверхности. Следовательно, изменение числа устьиц может служить надежным показателем при использовании метода фитоиндикации загрязнения атмосферного воздуха в промышленных центрах и городах.

Результаты исследований показывают, что более всего промышленными выбросами загрязнена атмосфера Заводского, Кировского и Рудничного районов города.

По данным Кемеровского центра по гидрометеорологии и мониторингу окружающей среды, на территории города в воздухе присутствуют более 20 ингредиентов, по 12 из которых превышены гигиенические ПДК. Наши данные согласуются с этими показателями. Наиболее загрязнена атмосфера Кировского района, где в воздухе присутствует диоксид азота (среднегодовая концентрация 1,4, максимальная 4,9 ПДК), оксид углерода (максимальная 3,8 ПДК), аммиак (средняя до 3,5, максимальая разовая 8,6 ПДК), диметиламин (максимальная 9,2 ПДК).

Вместе с тем Кировский район подвергается воздействию выбросов предприятий Заводского района при переносе их господствующими юго-западными ветрами. В Рудничном районе в воздухе преобладает формальдегид (средняя концентрация 1,5, максимальная разовая 4,9 ПДК), сероуглерод (соответственно 1,5 и 4,2 ПДК). В Заводском районе много пыли, хлористого водорода (максимальная концентрация 2,8 и 2 ПДК), аммиака (средняя 2 ПДК). Центральный район характеризуется высоким содержанием в воздухе оксида азота (максимальная концентрация 1,4 ПДК), сероуглерода (средняя 1,7 ПДК), фенола (среднегодовая 3,8 ПДК). В Ленинском районе отмечается повышенное содержание аммиака в воздухе (среднегодовая 1,5 ПДК) [5].

Таким образом, установлено некоторое соответствие между уровнями загрязнения атмосферы города промышленными выбросами и изменением изучаемых характеристик, что позволяет сделать вывод о возможности использования рассмотренных показателей как для индикации загрязнения воздуха, так и для оценки его влияния на древесную растительность.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Николаевский В.С.* Биологические основы газоустойчивости растений. Новосибирск: Наука, 1979. 278 с.
- 2. *Николаевский В.С.* Эколого-физиологические основы газоустойчивости растений. М., 1989. 65 с.
- 3. *Николаевский В.С.* Экологическая оценка загрязнения окружающей среды и состояния наземных экосистем методами фитоиндикации. М.: МГУЛ, 1998. 193 с.
- 4. *Николаевская Т.В.* Эколого-физиологическая оценка устойчивости растений к трем газам (SO_2 , H_2S , NH_3): Автореф. дис. ... канд. биол. наук. M.: TCXA, 1992. 17 с.

5. Состояние окружающей природной среды Кемеровской области в 1999 году: Доклад Госкомитета по охране окружающей среды Кемеровской области. – Кемерово, 2000. - 289 с.

Кемеровский технологический институт пищевой промышленности

Поступила 01.06.01

O.A. Neverova, E.Yu. Kolmogorova

Xerophytization of Wood Plant Leaves as Index of Atmospheric Air Pollution (on the example of Kemerovo)

Some accordance of atmosphere pollution levels by industrial emissions and degrees of changing a number of analytical characteristics has been established. A conclusion is drawn about the possibility of using the data for air pollution indication and its influence on trees.