## УДК 630\*387.33

### В.М. Федулов, В.А. Барабанов

#### Северный (Арктический) федеральный университет имени М.В. Ломоносова

Федулов Василий Михайлович родился в 1988 г., окончил в 2009 г. Архангельский государственный технический университет, аспирант кафедры водного транспорта леса и гидравлики Северного (Арктического) федерального университета имени М.В. Ломоносова. Имеет 4 печатные работы в области совершенствования водного транспорта леса.

E-mail: foontvasily@gmail.com



Барабанов Виктор Александрович родился в 1945 г., окончил в 1967 г. Архангельский лесотехнический институт, кандидат технических наук, доцент, заведующий кафедрой водного транспорта леса и гидравлики Северного (Арктического) федерального университета имени М.В. Ломоносова. Имеет более 90 печатных работ в области совершенствования водного транспорта леса и взаимодействия тел с жидкостью. Тел.: 8(8182) 21-61-50



## РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ГИДРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ПЛОТОВ ИЗ ПЛОСКИХ СПЛОТОЧНЫХ ЕДИНИЦ

Приведены результаты исследований гидродинамических характеристик плотов из плоских сплоточных единиц, получены математические зависимости для определения коэффициентов сопротивления и результирующей силы полного сопротивления.

Ключевые слова: сила сопротивления, плот, плоские сплоточные единицы, коэффициент сопротивления формы, коэффициент сопротивления трения, мелководье.

На малых реках с ограниченными глубинами и шириной, где затруднителен или невозможен сплав плотов, состоящих из стандартных пучков, возможно применение плотов из плоских сплоточных единиц (ПСЕ) малой осадки. Для их надежной эксплуатации требуется знать гидродинамические и инерционные характеристики плотов и разработать рациональное техническое обеспечение.

Профессору А.А. Митрофанову принадлежит приоритет научных исследований, направленных на разработку и обоснование новых технологий лесосплава на базе ПСЕ малой осадки [2]. К настоящему времени опубликованы некоторые результаты исследований одиночных ПСЕ [3] и линеек из них [6, 9].

Целью нашей работы является экспериментальная оценка силы сопротивления воды равномерному движению плотов, состоящих из двух сплоточных единиц по ширине (рис. 1), а также определение коэффициентов сопротивления трения и формы с использованием моделей в условиях спокойной воды при различных интервалах между сплоточными единицами по длине и ширине.

<sup>©</sup> Федулов В.М., Барабанов В.А., 2012



Рис. 1. Модель плота из двенадцати пятирядных ПСЕ

Экспериментальные исследования были выполнены в опытном бассейне гравитационного типа лаборатории кафедры водного транспорта леса и гидравлики Северного (Арктического) федерального университета. Ширина бассейна 3 м, длина 14 м, глубина 0,3 м. Исследования проводились на моделях в геометрическом масштабе 1 : 20. Соотношение глубины бассейна к осадке плота  $\frac{h_6}{T}$  изменялось от 6,5 до 32,0. При этом *T* варьировалась в пределах 0,007...0,044 м,  $h_6$  – в пределах 0,07...0,30 м. Длину моделей изменяли в диапазоне 0,65...2,00 м, интервалы между сплоточными единицами по длине  $C_1$  и ширине  $C_2$  – в диапазоне 0,00...0,05 м.

Волновое сопротивление (сопротивление от волн, вызванных движением плота на поверхности жидкости) зависит от глубины наполнения бассейна в том случае, если скорость движения модели превышает  $0,4\sqrt{gh_5}$  [1]. Таким образом, если  $0,4\sqrt{9,81\cdot0,3} = 0,69$  м/с, то глубина наполнения бассейна не оказывает влияния на волновое сопротивление. В наших экспериментах максимальные скорости движения моделей в экспериментах не превышали 0,24 м/с, т. е. глубина наполнения бассейна не оказывала влияния на волновое сопротивление.

Для создания тяговых усилий использовали канатоблочную систему, аналогичную описанной в работе [6], но с применением нового оборудования. Движение моделей плотов фиксировали с помощью бесконтактного датчика оборотов BC-401. Электрический сигнал, поступающий от датчика, через дифференциальный усилитель ZET-410 и аналого-цифровой преобразователь ZET-220 передавался в персональный компьютер (ПК) для дальнейшей обработки. Запись и первоначальную обработку сигналов осуществляли с использованием программного пакета ZetLab, который поставлялся вместе с вышеназванным измерительным оборудованием. По результатам буксировки моделей строили графики зависимости скорости от времени.

Модели изготавливали из модельных бревен диаметром 10...11 мм и длиной (325±2) мм. Моделирование выполнялось в диапазоне чисел Фруда (0,017...0,095). Числа Рейнольдса варьировались в диапазоне (0,5...3,6)·10<sup>5</sup>. В качестве линейного параметра при определении чисел Фруда и Рейнольдса была принята длина модели *L*. Опыты проводили при температуре воды 15...16 °C. Буксировали модели при пяти различных скоростях *v*, соответствующих натурным, в диапазоне от 0,35 до 1,00 м/с. На основании рекомендаций [2] число повторений в серии опытов было принято равным пяти.

#### Определение полного сопротивления

Для получения математической зависимости определения полного сопротивления воды движению плота из ПСЕ был использован метод множественной регрессии. В качестве входных величин были выбраны длина L, осадка T, интервал по ширине  $C_1$  и длине  $C_2$ , квадрат скорости движения модели  $v^2$ . Ширину B изменяли за счет изменения интервала  $C_1$ . Входные факторы варьировались на различных уровнях: осадка и длина – на трех уровнях, интервалы – на двух, скорость – на пяти.

Все расчеты были выполнены на ПК с помощью программного пакета Statistica. Применялся метод пошагового включения переменных [10]. Коэффициенты регрессии  $b_i$  приведены в табл. 1. Незначимые коэффициенты, для которых расчетное значение t-критерия меньше табличного, в таблицу не включены.

В результате было получено следующее уравнение регрессии:

$$\widehat{R} = 0,06 + 202,16Tv^{2} + 2,26Lv^{2} + 50,76TLv^{2} + 12,56C_{2}Lv^{2} + 442,93TC_{1}v^{2} + 564,59 C_{1}C_{2}L - 13559,27TC_{1}C_{2}Lv^{2}.$$
(1)

Статистические характеристики

# Таблица 1

| Пара-<br>метр | Коэффициент<br>регрессии<br><i>b<sub>i</sub></i> | Стандартное<br>отклонение<br>$s_{b_i}$ | t-критерий |           | ± 95 %-й                  |  |
|---------------|--------------------------------------------------|----------------------------------------|------------|-----------|---------------------------|--|
|               |                                                  |                                        | расчетный  | табличный | доверительный<br>интервал |  |
| $b_0$         | 0,06                                             | 0,0027                                 | 20,568     |           | 0,05110,0619              |  |
| $b_{15}$      | 202,16                                           | 4,4133                                 | 45,807     |           | 193,4500210,8700          |  |
| $b_{45}$      | 2,26                                             | 0,1069                                 | 21,110     |           | 2,04712,4693              |  |
| $b_{145}$     | 50,76                                            | 3,9252                                 | 12,932     | 1,653     | 43,014458,5039            |  |
| $b_{345}$     | 12,56                                            | 2,1072                                 | 5,962      |           | 8,406216,7215             |  |
| $b_{125}$     | 442,93                                           | 83,5326                                | 5,302      |           | 278,1100607,7430          |  |
| $b_{1234}$    | 564,59                                           | 98,8875                                | 5,709      |           | 369,4740759,7000          |  |
| $b_{12345}$   | -13559,27                                        | 2765,2300                              | -4,903     |           | -19015,30008103,2000      |  |

Далее определяли значимость регрессии. Для этого вычисляли F-критерий. Результаты расчета представлены в табл. 2.

Таблица 2

| Парацотр    | Сумма        | Число степеней | Средний           | F-критерий |  |
|-------------|--------------|----------------|-------------------|------------|--|
| параметр    | квадратов SS | свободы df     | квадрат <i>MS</i> |            |  |
| $b_0$       | 0,142048     | 1              | 0,142048          | 423,03     |  |
| $b_{15}$    | 0,704572     | 1              | 0,704572          | 2098,28    |  |
| $b_{45}$    | 0,149635     | 1              | 0,149635          | 445,63     |  |
| $b_{145}$   | 0,056152     | 1              | 0,056152          | 167,23     |  |
| $b_{345}$   | 0,011937     | 1              | 0,011937          | 35,55      |  |
| $b_{125}$   | 0,009441     | 1              | 0,009441          | 28,12      |  |
| $b_{1234}$  | 0,010946     | 1              | 0,010946          | 32,60      |  |
| $b_{12345}$ | 0,008074     | 1              | 0,008074          | 24,04      |  |
| Остаток     | 0,061113     | 182            | 0,000336          | -          |  |

Результаты дисперсионного анализа

При числе степеней свободы 1, 182 и доверительной вероятности 95 % табличное значение  $F_{\text{табл}} = 3,89$ . Так как для всех значений  $F_{\text{расч}} > F_{\text{табл}}$ , была принята гипотеза о том, что регрессия значима с риском ошибиться не более чем в 5 % случаев.

Далее вычисляли коэффициент множественной корреляции  $R^2$  и скорректированный коэффициент множественной корреляции  $R_{adj}^2$  [10, 11]:  $R^2 = 0,992; R_{adj}^2 = 0,991,$  т.е. полученное уравнение регрессии (1) на 99,1 % объясняет разброс данных относительно среднего  $\overline{R}$ .

График, приведенный на рис. 2, иллюстрирует связь между наблюдаемыми и предсказанными по уравнению регрессии (1) значениями сопротивления. Экспериментальные точки располагаются в достаточной близости от биссектрисы координатного угла без значительного отклонения. Можно сделать вывод, что математическая модель (1) адекватно отражает экспериментальные данные.

Рис. 2. График связи между предсказанными  $R_{\rm пр}$  и наблюдаемыми  $R_{\rm H}$  значениями сопротивления



### Определение коэффициентов сопротивления трения и формы

Зависимость для определения сопротивления движению моделей на глубокой спокойной воде в классическом варианте имеет следующий вид [5]:

$$R = R_{\rm Tp} + R_{\rm \phi} + R_{\rm BOJH} = \left(\xi_{\rm Tp}S + C_{\rm \phi}\Omega + C_{\rm BOJH}W\right) \frac{\rho v^2}{2},$$

где  $R_{\rm тр}$  – сопротивление трения;

1

 $R_{\phi}$  – сопротивление формы;

 $R_{\rm волн}$  – волновое сопротивление;

ξ<sub>тр</sub> – коэффициент сопротивления трения;

*L*, *B*, *T* – соответственно длина, ширина и осадка модели;

S – площадь трения, S = (2T + B)L;

 $C_{\phi}$  – коэффициент сопротивления формы;

 $\Omega$  – площадь миделевого сечения,  $\Omega = BT$ ;

Сволн – коэффициент волнового сопротивления;

*W* – характерная площадь;

р – плотность воды;

*v* – скорость движения модели.

Волновой составляющей сопротивления *R*<sub>волн</sub> можно пренебречь, так как скорости движения, а соответственно, и числа Фруда малы. Волнообразование практически не происходит. Поэтому

$$= R_{\mathrm{T}\mathrm{p}} + R_{\mathrm{\Phi}}.$$

R

Для каждой модели плота коэффициент  $\xi_{rp}$  определяли по формуле [8]:

$$\xi_{\rm rp} = \left(1,89+1,62\lg\left(\frac{L}{k_s}\right)\right)^{-2,5},$$

где  $k_s$  – крупность зерна эквивалентной «песочной» шероховатости плотов ( $k_s = 5 \text{ мм} - для$  натурных плотов,  $k_s = 0,5 \text{ мм} - для$  моделей плотов в геометрическом масштабе 10 – 50 [7]).

Коэффициент  $C_{\phi}$  рассчитывали как

$$C_{\phi} = \frac{2(R - R_{\rm rp})}{\rho \Omega v^2}.$$
 (2)

Полное сопротивление R определяли по результатам экспериментальных исследований для каждого опыта в зависимости от скорости равномерного движения модели, длины, осадки, интервалов по длине и ширине между сплоточными единицами. В результате расчета коэффициентов  $C_{\phi}$  по формуле (2) для каждой модели плота из ПСЕ методом наименьших квадратов была подобрана аппроксимирующая зависимость вида

$$C_{\phi} = 0.733 + 0.744 \left(\frac{B}{T}\right)^{-0.74}$$
 (3)

Формула (2) применима для диапазона натурных скоростей от 0,35 до 1,00 м/с и диапазона отношения  $\frac{B}{T} = 14...100$ .

### Влияние мелководья на сопротивление движению плотов из ПСЕ

Максимальная глубина наполнения бассейна, при которой его дно не оказывает дополнительного влияния на сопротивление движению, определяли по рекомендациям [4, 5]. Считается, что глубина воды в бассейне  $h_5$  не оказывает влияние на вязкостное сопротивление движению пучковых плотов при отношении глубины к осадке  $\frac{h_5}{h_5} > 8$  [4] или  $\frac{h_5}{h_5} > 10$  [7]

отношении глубины к осадке  $\frac{h_6}{T} > 8$  [4] или  $\frac{h_6}{T} > 10$  [7].

Дополнительное сопротивление, учитывающее влияния мелководья, можно выразить зависимостью

$$\Delta R = kR$$
,

где *k* – коэффициент дополнительного сопротивления от влияния мелководья.

В результате исследований были получены коэффициенты  $k = f\left(\frac{h_6}{T}\right)$ 

характеризующие влияние мелководья на сопротивление движению (табл. 3).

Таблица 3

| Коэффициенты <i>к</i> для плотов из ПСЕ |       |       |       |       |       |  |  |  |  |  |
|-----------------------------------------|-------|-------|-------|-------|-------|--|--|--|--|--|
| $h_{ m 6}/T$                            | 6,5   | 4,4   | 3,3   | 2,2   | 1,6   |  |  |  |  |  |
| k                                       | 0,005 | 0,043 | 0,141 | 0,264 | 0,516 |  |  |  |  |  |

Из табл. 3 видно, что при  $\frac{h_6}{T} = 6,5$  дополнительное влияние мелководья составляет лишь 0,5 % от сопротивления на глубокой воде, в то время как при  $\frac{h_6}{T} = 1,6$  возникает дополнительное сопротивление 51,6 %.

По результатам расчетов был построен график зависимости  $k = f\left(\frac{h_6}{T}\right)$ , приведенный на рис. 3.



### Выводы

По результатам экспериментальных исследований получены:

математическая модель для определения полного сопротивления, которая учитывает гидродинамические эффекты, возникающие от наличия промежутков между сплоточными единицами по длине и ширине, и адекватно описывает экспериментальные данные;

формула для определения сопротивления формы в виде  $C_{\phi} = f\left(\frac{B}{T}\right)$ , ко-

торая применима для малых плотов из ПСЕ в диапазоне  $\frac{B}{T} = 14...100;$ 

коэффициенты дополнительного сопротивления от влияния мелководья.

#### СПИСОК ЛИТЕРАТУРЫ

1. *Мельников Л.В.* Исследование гидродинамического способа остановки плотов водными парашютами: дис. ... канд. техн. наук. Архангельск, 1974. 228 с.

2. *Митрофанов А.А.* Лесосплав. Новые технологии, научное и техническое обеспечение: моногр. Архангельск: АГТУ, 2007. 492 с.

3. Мурашова О.В., Митрофанов А.А. Исследование гидродинамических характеристик плоских сплоточных единиц на моделях и в натурных условиях // Лесн. журн. 2007. №1. С. 58–66. (Изв. высш. учеб. заведений).

4. Овчинников М.М. Транспортные характеристики пучковых плотов: учеб. пособие. Ленинград: ЛТА, 1985. 80 с.

5. Павленко Г.Е. Сопротивление воды движению судов. М.: Мор. транспорт, 1956. 508 с.

6. Перфильев П.Н., Митрофанов А.А. Исследования гидродинамических характеристик линеек из плоских сплоточных единиц // Лесн. журн. 2009. №1. С. 44–51. (Изв. высш. учеб. заведений).

7. Худоногов В.Н. Гидродинамическое взаимодействие плотов и внешней среды. Красноярск: Красн. кн. изд-во, 1966. 225 с.

8. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 712 с.

9. Штаборов Д.А. Некоторые результаты исследований инерционных характеристик линеек из плоских сплоточных единиц // Совершенствование техники и технологии лесозаготовок и транспорта леса: сб. науч. тр. ФПР АГТУ. Архангельск: Изд-во АГТУ, 2010. С. 96–98.

10. *Rawlings J.O., Pantula S.G., Dickey D.A.* Applied regression analysis: A research tool. New York: Springer-Verlag, 1998. 659 p.

11. Weisberg S. Applied Linear Regression: Third edition. Hoboken, New Jersey: John Wiley & Sons, 2005. 329 p.

Поступила 20.11.10

# V.M. Fedulov, V.A. Barabanov

Northern (Arctic) Federal University named after M.V. Lomonosov

## Results of Experimental Studies of Hydrodynamic Characteristics of Flat-Unit Rafts

The article presents the results of experimental studies of hydrodynamic characteristics of flat-unit rafts. The results are introduced in the form of mathematical relations for calculation of resistance coefficients and resultant force of total resistance.

Key words: resistance force, raft, flat raft units, form resistance coefficient, friction resistance coefficient, shallow water.