УДК 630*561.24:630.111

С.М. Матвеев

Матвеев Сергей Михайлович родился в 1962 г., окончил в 1984 г. Воронежский лесотехнический институт, кандидат сельскохозяйственных наук, доцент кафедры лесоводства Воронежской государственной лесотехнической академии. Имеет 30 печатных работ в области лесной экологии, дендроклиматологии, устойчивости сосновых насаждений к антропогенным воздействиям.

ЦИКЛИЧНОСТЬ ПРИРОСТА СОСНОВЫХ ДРЕВО-СТОЕВ ЦЕНТРАЛЬНОЙ ЛЕСОСТЕПИ В 11-ЛЕТНЕМ ЦИКЛЕ СОЛНЕЧНОЙ АКТИВНОСТИ

Рассмотрены даты экстремумов радиального прироста сосны обыкновенной в 125 — 140-летних древостоях. Показана возможность надежного прогнозирования динамики прироста сосны по фазам 11-летнего цикла солнечной активности.

Ключевые слова: сосна обыкновенная, радиальный прирост, цикличность, солнечная активность, климатические колебания.

Ежегодный прирост древесины по диаметру ствола у древесных пород умеренного климата имеет циклическую динамику. Прирост древостоев сосны обыкновенной в Центральной лесостепи Русской равнины полицикличен: прослеживаются и накладываются циклы разных порядков, от 2-3летних до вековых и многовековых. Наиболее заметен 10-12-летний цикл [2, 4, 7], первопричиной которого, очевидно, является 11-летний цикл активности Солнца [6, 9, 10 и др.], также наиболее изученный и даже пронумерованный: первым считается период от минимума 1755 г. до минимума 1766 г., с 1996 г. начался 23-й период. Непрерывные наблюдения за солнечной активностью охватывают три столетия (1700–2000 гг.), за это время выделяются три вековых цикла солнечной активности. Эпохи минимума отмечены на рубеже веков (1700–1710-е; 1800–1820-е; 2000-е и, очевидно, 2010-е гг.). Эпохи максимума наблюдались в 1770–1780-е; в 1830–1840-е и 1870-е; в 1940–1950-е и 1970–1980-е гг. [5, 6, 9].

В нашей работе рассмотрены даты экстремумов (календарные годы наиболее высоких максимумов или глубоких минимумов) радиального прироста сосны обыкновенной на четырех участках в 125–140-летних древостоях. Рассматриваемый период охватывает ветвь спада предыдущего векового цикла солнечной активности (1870–1900-е гг.) и последний вековой цикл, начавшийся эпохой минимума в 1900–1910-е гг. и заканчивающийся эпохой минимума в настоящее время. Даты экстремумов проанализированы на фоне изменчивости солнечной активности (выраженной в числах Вольфа (W)) в 11-летнем цикле за весь период роста древостоев.

Обследованные древостои сосны произрастают в свежих суборевых (B_2) лесорастительных условиях, тип леса сосняк травяной с дубом (участки \mathbb{N}_2 1–3) и свежих боровых (A_2) , тип леса сосняк травяной (участок \mathbb{N}_2 4). Именно эти экотопы (и приблизительно в той же пропорции) преобладают по площади в борах Центральной лесостепи. Участки \mathbb{N}_2 1, 3, 4 расположены на территории Учебно-опытного лесхоза Воронежской лесотехнической академии, участок \mathbb{N}_2 2 – в Сомовском лесхозе Воронежской области. На каждом участке возрастным буравом отобрано 10 ... 20 кернов древесины на высоте 1,3 м. Ширина годичных колец измерена под микроскопом МБС-9 с точностью 0,05 мм и выражена в относительных индексах [5].

Корреляционный анализ показал низкую тесноту прямолинейной связи изменчивости ширины годичных колец сосны (в относительных индексах) на обследованных участках с динамикой солнечной активности (в числах Вольфа): коэффициент корреляции $r \le 0,1$. Нелинейная связь оказалась умеренной: корреляционное отношение $\eta \le 0,4$.

Проведенный нами (с использованием компьютерной программы STADIA-98) спектральный анализ цикличности исследуемых дендрохронологических рядов индексов прироста (полученных с применением 11-летней скользящей средней) в качестве нормы прироста выявил наличие хорошо выраженных максимумов мощности. Основные максимумы спектральной плотности ряда № 1 (в годах периодов, по убыванию значимости) следующие: 10,6; 8,8; 13,3; 11,8; 4,4; 3,7; 4,2; 9,6; 7,6; ряда № 2 соответственно: 12,0; 15,4; 3,1; 5,1; 9,8; 13,5; 21,6; 6,4; 3,4; ряда № 3: 8,8; 12,0; 6,6; 6,0; 10,2; 13,2; 3,9; 8,3; 11,0; ряда № 4: 12,9; 10,6; 14,5; 8,3; 6,8; 7,3; 5,0; 2,5; 6,4. Во всех обследованных рядах определенные циклические составляющие вносят больший вклад в общую изменчивость по сравнению с соседними частотами, это следующие частотные полосы: 12,9 ... 13,5; 9,6 ... 12,0; 8,3 ... 8,8; 6,4 ... 7,6; 5,0 ... 5,1; 4,2 ... 4,4; 3,1 ... 3,9. Существование наиболее значимых частотных полос в обобщенных дендрохронологических рядах по хвойным породам (лиственница сибирская, ель Шренка) отмечалось и в других работах [3].

Выявление значимых циклов в нестандартизированных рядах, проведенное для участков № 3 и 4, позволило установить колебания с большим периодом и подтвердить важность уже выявленных циклов. В ряду № 3 это циклы (по убыванию значимости): 22,3; 44,7; 26,8; 12,2; 33,5; 14,9; 8,9; 6,7; 13,4; в ряду № 4: 14,8; 13,1; 23,6; 29,5; 16,7; 10,7; 9,8; 3,5; 39,3.

Кросс-спектральный анализ индексов прироста (ряды № 1 и 2) и солнечной активности (числа Вольфа) позволил обнаружить области резонанса совмещенных временных рядов (т. е. на каких частотах происходит синхронное изменение мощности). В свою очередь, передаточная функция представляет коэффициент усиления амплитуды спектра первого процесса (изменчивость прироста) за счет совмещения со вторым процессом (динамика солнечной активности). Кросс-спектр индексов прироста ряда № 1 с числами Вольфа (с 1880 г. по 1985 г.) показал резкое возрастание мощности при длине волны 10,6, здесь же наблюдается наибольшее значение переда-

точной функции. Самыми значимыми оказались также циклы: 9,6; 11,8; 8,8; 13,3. Кросс-спектр ряда № 2 с числами Вольфа (с 1882 г. по 1990 г.) показал максимальную мощность при длине волны 9,8, но передаточная функция выше при длине волны 10,8. Следующими по значимости оказались циклы: 12,0; 5,1; 21,6.

Оценка спектральной плотности хорошо характеризует частотную структуру дендрохронологических рядов. Однако методы спектрального анализа не нашли широкого применения из-за сложности статистических выводов, основанных лишь на оценках спектральной плотности [3].

Выявление циклов различной длительности и их вклада в общую циклическую динамику прироста деревьев не «привязано» к определенным годам, что значительно обедняет возможности реальной оценки циклов. Детальный визуальный анализ экстремумов прироста сосны в пределах фаз 11-летнего цикла солнечной активности позволяет выявить важные в прогностическом отношении тенденции в приросте деревьев.

В табл. 1–3 представлены календарные годы и значения наиболее глубоких минимумов и наиболее высоких максимумов прироста сосны в экотопах B_2 (табл. 1, 2) и A_2 (табл. 3). Для каждой даты экстремумов прироста указана соответствующая фаза 11-летнего цикла солнечной активности и число лет, прошедших от последнего экстремума (максимума или минимума соответственно) активности Солнца. Двойные стрелки (ветвь роста — ветвь спада ($\uparrow\downarrow$)) в 1906 и 1990 гг. появились в таблице благодаря двойным максимумам солнечной активности, которые за исследуемый интервал времени наблюдались трижды: 1905, 1907 гг. (W = 64, 62); 1968, 1969 гг. (W = 106); 1989, 1991 гг. (W = 158, 146).

В экотопе B_2 , на всех трех участках, два – три первых минимума радиального прироста (до 1897 г.), наблюдаемые в первые десятилетия роста древостоев и приходящиеся на окончание предыдущего векового цикла солнечной активности, отмечены в различные фазы активности Солнца. Начиная с 1897 г., все минимумы прироста, за редким (единичным для каждого участка) исключением, наблюдаются на ветви спада солнечной активности.

Наиболее глубокие минимумы прироста сосны в экотопе B_2 характеризуют цикличность прироста со средним периодом около 11 лет и наблюдаются в следующие календарные годы: 1897, 1910–1911, 1920–1921, 1929–1933, 1938–1939, 1949–1950, 1959–1960, 1971–1973, 1984–1985, 1995–1996 гг.

Наличие ярких промежуточных минимумов в 11-летней цикличности прироста: 1891, 1905—1906, 1924—1925, 1946, 1956, 1964—1965, 1975, 1981, 1992 гг., в некоторых древостоях не менее глубоких, чем основные, показывает цикличность с периодом 5-6 лет (половина 11-летнего солнечного цикла). Колебания с периодом 5-6 лет имеет целый ряд климатических процессов, например явление ЮКЭН (Южное колебание — Эль-Ниньо), характеризующее изменения циркуляции атмосферы нашей планеты и климатические ритмы.

 $\begin{tabular}{ll} \begin{tabular}{ll} T аблица & 1 \\ \begin{tabular}{ll} \begin{tabular}{ll} A нализ экстремумов прироста сосны в экотопе B_2 по фазам солнечной активности (1870—1998 гг.) \\ (\uparrow - ветвь роста, \downarrow - ветвь спада, max - эпоха максимума, min — эпоха минимума солнечной активности) \\ \end{tabular}$

Год экс-		Минимумы			Мак	Максимумы			Минимумы		Максимумы		Минимумы		Максимумы				
тремума		прироста,			прироста,		прироста, уча-		прироста,		прироста,		прироста,						
чисел		участок № 1		участок № 1		сток № 2		участок № 2		участок № 3		участок № 3							
Вольфа (W)																			
min	max	min	Фаза	Лет	max	Фаза	Лет	min	Фаза	Лет	max	Фаза	Лет	min	Фаза	Лет	max	Фаза	Лет
			W	за		W	за		W	за		W	за		W	за		W	за
				max			min			max			min			max			min
				W			W			W			W			W			W
1867	1870																1870	max	
	1883-	1884	max					1882	1					1878	min		1881	↑	3
	1884	1004	IIIdx					1002	'					1070	111111		1001	'	3
1889	1893				1890	↑	1				1890	↑	1	1885	↓	1	1888	1	
		1891	↑			l '		1891	1			'		1891				*	
		1071	'					1893		0	1895	↓		1071	'				
1001	1905,	1807	1	4	1903	1	2	1897		4	1898	*		1897	1	4	1899	1	
1701	1907	1077	+	7	1703		_	1077	\	+	1070	\		1077	\	+	10))	\	
	1907	1905		0				1006	* I	1	1908								
1012	1017	1905	max	U	1012			1906		_		•		1010	١.	_	1016		2
1913	1917				1913	mın	0	1911	↓	4	1914,		1	1910	↓	3	1916,	1	3
											1916						1917		
	1928	-	\downarrow	4	1927	1	4	1921	↓	4	1928			1921	•	4	1929	↓	
1933	1937	1929	\downarrow	1	1937	max		1933	min		1935	1	2	1933			1937		
1944	1947	1939	\downarrow	2	1944	min	0	1939	↓	2	1941,	↓	1	1939	\downarrow	2	1947	max	
											1945	1							
		1950	1	3	1955	↑	1	1946	↑		1955		1	1950	1	3	1955	↑	1
1954	1957	1959	Ιį	2		l '			l '			'		1959		2	1963	Ιi	
	1968-	1,0,	*	_	1966	1	2	1964	min		1966	↑	2	1965	•	-	1970	Ì	
1704	1969				1700	'	_	1704	111111		1700	'	_	1703	'		1770	\	
1074	1979	1072	. ↓	3	1978.	↑	4	1971.	↓	2	1978	1	4	1972	1	3	1978	1	4
17/4	1)//	1973		4	1980		_	1973		4	1770	'	_	17/2	+	3	1776	'	7
1006	1000		 		1900	↓			+	-	1000	* 1	4	1004		_	1000	* 1	4
1986	1989,		↓	5				1984	1	5	1990	↑↓	4	1984	↓ ↓	5	1990	↑↓	4
	1991	1985	1	6										l	١.	l _		١.	
1996						l	l		l	l		l	l	1992	↓	3	1998	↑	2

Таблица 2

Значения индексов прироста сосны (1) в экотопе B_2 в годы экстремумов, %												
	Участ	ок № 1			Участ	ок № 2		Участок № 3				
Мин	имум	Макс	имум	Мин	имум	Макс	имум	Мин	имум	Максимум		
прироста		прироста		прироста		прир	оста	прир	оста	прироста		
Год	<i>I</i> , %	Год	<i>I</i> , %	Год	<i>I</i> , %	Год	<i>I</i> , %	Год	<i>I</i> , %	Год	<i>I</i> , %	
										1870	123	
1884	85			1882	74			1878	85	1881	116	
		1890	117			1890	121	1885	83	1888	117	
1891	79			1891	74			1891	73			
				1893	73	1895	134					
1897	71	1903	135	1897	80	1898	134	1897	83	1899	115	
1905	75			1906	85	1908	124					
		1913	122	1911	70	1914	125	1910	76	1916	142	
						1916	125			1917	143	
1921	73	1927	129	1921	57	1928	111	1921	59	1929	113	
1929	80	1937	135	1933	87	1935	125	1933	92	1937	128	
1939	58	1944	137	1939	69	1941	129	1939	77	1947	122	
						1945	124					
1950	72	1955	121	1946	62	1955	129	1950	55	1955	139	
1959	78							1959	83	1963	117	
		1966	122	1964	59	1966	181	1965	84	1970	144	
1972	71	1978	124	1971	63	1978	183	1972	54	1978	133	
1973	68	1980	147	1973	57							
1984	73			1984	52	1990	173	1984	59	1990	161	
1985	70											
								1992	59	1998	110	

Таблица 3

Анализ экстремумов прироста сосны в экотопе A_2 по фазам солнечной активности (1887 – 1998 гг.)

no pasam contre mon artificient (1007 1990 11.)											
Год экс	гремума	N	1инимумь	и прирост	a,	Максимумы прироста,					
чисел Вольфа (W)			участо	ж № 4		участок № 4					
min	max	min Фаза W		Лет за	min I,	max	Фаза W	Лет за	$\max I$,		
				max W	%			min W	%		
1889	1893	1891	1		55	1887	\downarrow		138		
1901	1905,	1897	\downarrow	4	79	1899	\downarrow		115		
	1907										
						1906	$\uparrow\downarrow$	1	116		
1913	1917	1911	\downarrow	6	52	1914	1	1	163		
1923	1928	1921	\downarrow	4	60	1927	1	4	133		
1933	1937	1932	\downarrow	4	77	1937	max		157		
1944	1947	1939	\downarrow	2	69	1945	1	1	138		
1954	1957	1949	\downarrow	2	75	1955	1	1	130		
1964	1968,	1960	\downarrow	3	81	1966	1	2	118		
	1969										
1974	1979	1972	\downarrow	4	69	1978	1	4	120		
1986	1989,	1984	\downarrow	5	75	1989	max		158		
	1991										
1996		1992	\downarrow	3	45	1997	1	1	118		

Максимумы прироста в экотопе B_2 менее показательны в прогностическом отношении, чем минимумы: здесь чаще наблюдается отклонение от прямой связи экстремумов прироста с фазами солнечной активности. Такое распределение объясняется тем, что ветвь роста значительно короче ветви спада и обычно составляет 3-4 года.

Наличие временно́го сдвига цикличности прироста на рубеже XIX—XX вв., при смене векового цикла солнечной активности подтверждает ранее обоснованное положение [1, 3, 4, 8] об изменчивости циклов во времени: по продолжительности, амплитуде, полярности связей и т. д. Это еще раз подчеркивает необходимость оценки климатических условий, изменчивости прироста за отдельные, сравнительно однородные временные этапы. По нашим данным, в последнем 30-летии в лесостепи преобладает прямая зависимость между изменением значений солнечной активности и прироста сосны. Наличие синхронной связи в динамике солнечной активности и прироста древостоев отмечали многие исследователи [1, 10], в частности и в лесостепи [5 – 7].

Влияние солнечной активности на изменчивость прироста деревьев является опосредованным. Можно считать доказанным наличие последовательной зависимости: солнечная активность — циркуляция атмосферы — климатические изменения — прирост деревьев [2, 4, 9]. М.П. Скрябин [6], отмечая, что период минимума векового цикла солнечной активности в последние три столетия совпадал с последним десятилетием оканчивающегося века и первым десятилетием начинающегося, указывал, что в эти периоды в условиях лесостепи наблюдалась длительная засушливая погода и создавались неблагоприятные условия для роста леса.

В экотопе A_2 , т. е. в более экстремальных (по плодородию почвы) условиях, в борах, зависимость между приростом сосны и фазами солнечной активности значительно более четкая, чем в суборях. Наличие хорошо выраженных связей между климатом и приростом в экстремальных условиях отмечали и другие исследователи [1, 8], как и лучшее проявление циклической динамики прироста [4, 7].

В свежем бору максимумы прироста сосны отмечены на ветви роста (начиная с 1906 г., т. е. в последнем вековом цикле), причем чаще (5 раз из 10 циклов) через 1 год после минимума солнечной активности. Минимумы прироста сосны (также с начала века, с 1897 г.) наблюдались всегда на ветви спада.

За исследуемый интервал времени одновременно на всех четырех участках экстремумы прироста были в следующие годы: 1891, 1897, 1921, 1939, 1971 – 1973, 1984 гг. (минимумы прироста) и 1955, 1978 гг. (максимумы прироста). За исключением 1891 г., все минимумы находились на ветви спада солнечной активности, оба максимума – на ветви роста. Периоды между основными минимумами характеризуют длительность различных циклов прироста сосны: 1891 – 1897 (6 лет), 1897 – 1921 (24 года), 1921 – 1939 (18 лет), 1939 – 1972 (33 года), 1972 – 1984 (12 лет).

2*

Как видим, минимумы прироста более ценны для синхронизации данных, перекрестной датировки, при выявлении общих закономерностей и прогнозировании. Все они совпадают с серьезными засухами, количество осадков за вегетационный период и за год в указанные годы значительно ниже среднего: 1891 г. – 128 мм за вегетационный период (при среднем многолетнем 307 мм) и 263 мм за год (при среднем многолетнем 520 мм), остальные минимумы соответственно: 1897 г. – 160 (307), 1921 г. – 195 (364), 1939 г. – 172 (382), 1971 г. – 158 (401), 1984 г. – 244 (422) мм. Обращает на себя внимание рост осадков за год в годы минимумов прироста – это результат наступления многоводного периода в лесостепи [5].

Для практики лесного хозяйства, при проектировании лесохозяйственных мероприятий на ревизионный период (10 лет), актуален прогноз изменчивости климатических условий в 11-летнем цикле солнечной активности. Надежный прогноз периодов с повышенными и пониженными (вследствие неблагоприятной климатической обстановки) приростами древостоев позволит «привязать» проведение различных лесохозяйственных работ к определенным календарным годам ревизионного периода. Изменение темпов радиального и объемного прироста (с определенной периодичностью) дает вариации в десятки процентов (от 60 ... 80 до 160 ... 180 %), что существенно меняет реальную картину результатов проведения лесохозяйственных мероприятий.

Текущее десятилетие (2002–2012 гг.) приходится на эпоху минимума векового цикла солнечной активности. В Центральной лесостепи Русской равнины возможно некоторое снижение количества выпадающих осадков в этот период, связанное с вековыми колебаниями климатических условий. Следует также ожидать дальнейшего роста температуры приземных слоев воздуха, вызванного как естественными колебаниями климата, так и антропогенным воздействием (усилением парникового эффекта). Усиливается загрязнение атмосферы, рекреационное воздействие, т. е. в целом создаются неблагоприятные условия для роста древостоев. В 11-летнем цикле солнечной активности максимум наблюдался в 2000 г. В пределах текущего десятилетия (после эпохи максимума, с 2002 г.) неблагоприятными следует считать первые 5-7 лет (ветвь спада и эпоха минимума 11- летнего цикла).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Комин Г.Е.* Цикличность в динамике лесов Зауралья: автореф. дис. ... д-ра биол. наук / Г. Е. Комин. Свердловск, 1978. 39 с.
- 2. Костин С.И. Повторяемость засушливых и влажных периодов в центральной части лесостепи Русской равнины / С.И. Костин // Вопросы повышения продуктивности лесного хозяйства: науч. записки Воронеж. лесотехн. ин-та.— Воронеж: Изд-во Воронеж. ун-та, 1963. Т. 29, вып. 1. С. 91—101.
- 3. *Мазепа В.С.* Использование спектрального представления и линейной фильтрации стационарных последовательностей при анализе цикличности в дендрохронологических рядах / В.С. Мазепа // Дендрохронология и дендроклиматология. Новосибирск: Наука, 1986. С. 49–65.

- 4. *Матвеев С.М.* Дендрохронология: учеб. пособие / С.М. Матвеев. Воронеж: Воронеж. гос. лесотехн. акад., 2001. 88 с.
- 5. *Матвеев С.М.* Дендроиндикация динамики состояния сосновых насаждений Центральной лесостепи / С.М. Матвеев. Воронеж: Изд-во ВГУ, 2003. 272 с.
- 6. *Скрябин М.П.* Дубовые леса и вековые циклы в природных условиях / М.П. Скрябин // Восстановление и повышение производительности дубрав лесостепи: науч. записки Воронеж. лесотехн. ин-та. Воронеж, 1960. Т. 20. С. 211–217.
- 7. Таранков В.И. Цикличность прироста сосны обыкновенной в восточноевропейской лесостепи / В.И. Таранков, Л.Б. Лазуренко // Лесоведение. 1990. No 2 C. 12—19
- 8. Шиятов $C.\Gamma$. Дендрохронология, ее принципы и методы / $C.\Gamma$. Шиятов // Записки Свердлов. отд. Всесоюз. ботанич. общества. Свердловск, 1973. Вып. 6. C. 53—81.
- 9. Эйгенсон М.С. Солнце, погода и климат / М.С. Эйгенсон. Л.: Гидрометеоиздат, 1963. 229 с.
- 10. *Douglass A.E.* Climatic cycles and tree growth: A study of the annual rings of trees in relation to climate and solar activity / A.E. Douglass. Washington: Carnegie Inst., 1919. Vol. 1. P. 127; 1928. Vol. 2. P. 166; 1936. Vol. 3. P. 171.

Воронежская государственная лесотехническая академия

Поступила 22.07.04

S.M. Matveev

Cycling of Pine Stands Growth in Central Forest-steppe in 11-year Cycle of Solar Activity

The dates of radial accretion extremes of Scots pine in 125-140-year stands are analyzed. The possibility of reliable forecasting of pine growth dynamics according to phases of 11-year solar activity cycle is demonstrated.