СПИСОК ЛИТЕРАТУРЫ

[1]. Мартынов М. А., Вылетжанина К. А. Рентгенография полимеров.— М.: Химия, 1972.—93 с. [2]. Мелех М. В., Петрова В. В., Гелес И. С. Исследование целлюлозы коры методами рентгеноструктурного анализа // Химия древесины.—1987.—№ 6.— С. 52—58. [3]. Петрова В. В., Мелех М. В. Изучение структурного состояния целлюлозы коры и древесины сосны, по сравнению с елью, методами рентгенографии // Химия и технология переработки древесины и коры.—Петрозаводск, 1990.— С. 67—74. [4]. Јауте G., Кпоlle Н. Beitrag zur empirischen röntgenographischen Bestimmung des Kristallinitätsgrades cellulosischen Stoffe // Das Papier.—1964.— V. 18, N 6.— S. 249—255.

Поступила 23 ноября 1992 г.

УДК 676.017.42

B. H. KOMAPOB

Архангельский государственный технический университет

ДЕФОРМАТИВНОСТЬ ЦЕЛЛЮЛОЗНО-БУМАЖНЫХ МАТЕРИАЛОВ ПРИ ИЗГИБЕ

Представлена, гипотеза упруго-пластического деформирования в зоне сжатия при изгибе образцов целлюлозно-бумажных материалов, Показана возможность использования треугольно-трапецеидальной эпюры для расчета слоя структуры материала, в котором возникает предельное состояние.

A hypothesis of the resilient-plastic deforming of pulp-and-paper sample materials in the zone of compression when bending has been set up. The possibility of applying the triangle-trapezium orthographic epure projection for the calculation of the material structure layer in which strain occurs is revealed.

Жесткость при изгибе является важной характеристикой качества печатных и упаковочных видов бумаги, а также картона, предназначенного для изготовления тары. Низкая жесткость при изгибе необходима для таких материалов, как санитарно-гигиенические и специальные упаковочные виды бумаги, нотная бумага и др. [6, 15, 17, 19, 21, 22].

Существует достаточно много методов определения жесткости при изгибе. При их реализации измеряют следующие величины: сгибающее усилие; угол изгиба; прогиб; сгибающе-надламывающий угол; сумма величин работы, вызывающей упругие и пластические деформации; резонансная частота; модуль упругости или жесткость при изгибе. Обзор методов представлен в работах [9, 25, 27]. В настоящее время по данным фирмы «Lorentzen and Wettre» [28] наибольшее применение за рубежом нашли следующие: 1) метод измерения жесткости при деформировании на заданный угол консольно-закрепленного образца под воздействием силы, приложенной к его концу (используют для большинства видов бумаги); 2) резонансный метод, который позволяет определять жесткость при деформировании образца только в упругой области; 3) четырехточечный метод для испытания очень жестких материалов типа гофрированного картона. В отечественной практике для определения жесткости картона и бумаги используют в основном стандартный метод [5], заключающийся в определении силы, приложенной к свободному концу консольно-закрепленного образца и изгибающей его на определенный угол, а также метод, основанный на измерении деформации под воздействием заданной силы при испытании консольно-закрепленного образца. Его широко применяют в лабораторной практике [13].

Отметим, что при испытании образцов бумаги и картона на жесткость при изгибе с использованием статических методов, которые ими-

тируют реальные условия переработки и применения этих материалов, проявляются не только упругие, но и пластические деформации. Одними из первых эту проблему обсуждали Брехт, Бликштадт и Мюллер [24, 26]. Для лучшего понимания обсуждаемого вопроса приведем основные положения.

Расчет деформации изгиба консоли, когда не учитывается собственный вес образца, в общем случае приводит С. П. Тимошенко [20]. Пренебрегая влиянием поперечной силы на кривизну образца, представим зависимость между радиусом кривизны г и изгибающим моментом М в виде

$$1/r_{(x)}^2 = M_{(x)}/EI, (1)$$

где E — модуль упругости при изгибе;

I — момент инерции поперечного сечения образца,

$$I = b\delta^3/12; \tag{2}$$

b — ширина образца; δ — толщина образца.

Отсюда получим для изогнутой оси образца дифференциальное уравнение второго порядка

$$\frac{\dot{M}_{(x)}}{EI} = \frac{d^2y/dx^2}{(1+(dy/dx)^2)^{3/2}}.$$
 (3)

Для практических целей найдем уравнение изогнутой линии в виде

$$y = f(x), \tag{4}$$

где f — стрела прогиба образца.

Так как $(dy/dx)^2 \ll 1$, то приближенное дифференциальное уравнение имеет вид

$$\frac{M_{(x)}}{EI} = d^2 y / dx^2 \tag{5}$$

или

$$\frac{P(l-x)}{EI} = d^2y/dx^2, \tag{6}$$

где P — нагрузка на образец (действующая сила);

l — длина образца.

После двукратного интегрирования получим выражение для определения стрелы прогиба:

$$f = y(l) = Pl^3/3EI;$$
 (7)

$$EI = Pl^3/3f. (8)$$

Приведенные выше уравнения являются приближенными, так как бумага — анизотропный упрогопластический материал [2, 7, 10].

При изгибе образца под влиянием постоянно действующей нагрузки, в зависимости от ее величины и свойств структуры бумаги или картона возможны три вида деформирования; эпюры нормальных напряжений для которых показаны на рис. 1:

- 1) напряжение, приложенное к крайним сжатым и растянутым волокнам, ниже или равно пределу упругости при данных видах деформирования. В этом случае в сжатой и растянутой зонах образца возникают только упругие деформации (эпюра 1);
- 2) напряжение, приложенное к крайним сжатым и растянутым волокнам, несколько выше предела упругости. В сжатой и растянутой

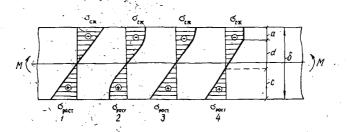


Рис. 1. Действительные (1-3) и упрощенная (4) эпюры нормальных напряжений

зонах возникают упруговязкие (замедленноупругие) деформации (эпюра 2);

3) напряжение крайнего растянутого волокна ниже или равно пределу упругости, а напряжение крайнего сжатого волокна выше пре-

дела упругости при сжатии (эпюра 3).

Испытания на изгиб проводят по схеме прибора ЖБИ-1. Для дальнейших рассуждений примем, что бумага является упруговязкопластическим материалом, который при изгибе в растянутой зоне сечения стержня работает упруго вплоть до разрыва крайних волокон, а в сжатой — упругопластически [21]. Ф. П. Белянкин [3] предложил для расчетов такого материала использовать упрощенную эпюру (эпюра 4). В работе [8] указывается на экспериментально установленный факт, когда в случае упругопластического изгиба закон плоских сечений сохраняется. Поэтому деформации линейно зависят от координаты у. Зона пластических деформаций распространяется внутрь сечения.

Для определения размеров а, d, c для эпюры 4 воспользуемся сле-

дующими уравнениями [18]:

$$ba\sigma_{cx} + b\frac{d}{2}\sigma_{cx} - b\frac{c}{2}\sigma_{pacr} = 0;$$

$$a + d + c = \delta;$$

$$\sigma_{cx}/\sigma_{pacr} = d/c,$$

где σ_{cw} , σ_{pact} — соответственно напряжения при сжатии и растяжении.

Решая эти уравнения совместно, получаем

$$a = \delta \, \frac{n_0 - 1}{n_0 + 1} \,; \tag{9}$$

$$d = \delta \, \frac{2}{(n_0 + 1)^2} \,; \tag{10}$$

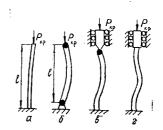
$$c = \delta \, \frac{2n_0}{(n_0 + 1)^3} \,; \tag{11}$$

$$n_0 = \sigma_{\text{pact}}/\sigma_{\text{cw}}. \tag{12}$$

Таким образом, зная $\sigma_{\text{раст}}$ и $\sigma_{\text{сж}}$, можно оценить образование предельного состояния в зоне сжатия при изгибе образца.

В работе [9] было показано, что модуль упругости $E_{\rm изr}$, рассчитанный по уравнению

$$E_{\rm H3r} = \frac{12EI}{bb^3} \,, \tag{13}$$


во всех исследуемых случаях меньше модуля упругости E_1 , определенного резонансным методом. Дальнейшие исследования показали, что эта закономерность наблюдается и при сравнении $E_{\rm nsr}$ и E_1 , получен-

ного обработкой кривой «напряжение — деформация» при испытании на растяжение [11, 12]. Обнаруженный эффект может быть интерпретирован двояко: во-первых, при изгибе напряжения растяжения и сжатия в крайних слоях образца превышают предел упругости; во-вторых, предел упругости при сжатии крайнего слоя ниже предела упругости при растяжении, что вызывает образование предельного состояния только в сжатой области. В этом случае в области сжатия после достижения максимального напряжения в крайнем слое плоскости листа может возникнуть чрезмерная деформация, но не в результате каких-либо остаточных изменений, а путем возникновения бокового перемещения, называемого потерей устойчивости. Классический случай обсуждался в работе [16]. Для прямого стержня, а в случае целлюлозно-бумажных материалов — отдельного волокна определенной длины, закрепленного на одном конце и свободного на другом, критическая нагрузка, вызывающая потерю устойчивости

$$P_{KD} = \pi^2 E I / 4 \ell^2 \tag{14}$$

Из этого уравнения видно, что при определенной длине волокна потеря устойчивости регламентируется лишь жесткостью и не зависит от предела текучести материала. Возможные способы крепления стержней показаны на рис. 2. Взаимодействие волокна в структуре бумаги или картона имеет более сложный характер.

Рис. 2. Критическая нагрузка для потери устойчивости упругих прямых стержней при различных $P_{\kappa p}$: $a - P_{\kappa p} = \pi^2 \ EI/l^2$; $s - P_{\kappa p} = 20,2 \ EI/l^2$; $e - P_{\kappa p} = 4\pi^2 \ EI/l^2$

Определение реальных напряжений, возникающих в крайних слоях при испытании на изгиб образцов целлюлозы, бумаги и картона— задача крайне сложная. Принимая, что гипотеза плоских сечений справедлива и при изгибе целлюлозно-бумажных материалов, для расчета напряжений в зоне растяжения может быть использовано уравнение Навье

$$\sigma = M/W, \tag{15}$$

где М — изгибающий момент;

.

RE

W — момент сопротивления поперечного сечения образца, $W = b\sigma^2/6$.

Данные, представленные в табл. 1, показывают, что напряжение $\sigma_{\text{раст}}$, возникающее в крайнем слое образца, подвергнутого изгибу, в несколько раз ниже, чем предел упругости σ_1 материала при испытании на растяжение.

В зоне сжатия при испытании на изгиб механическое поведение целлюлозно-бумажных материалов гораздо сложнее. Экспериментально установлено, что модуль упругости E_1 материала при испытании на растяжение выше модуля упругости при изгибе $E_{\rm изг}$. Можно предположить, что

$$E_{\text{H3F}} = (E_1 + E_{\text{cw}})/2,$$
 (16)

 F_{cw}^{d} — модуль упругости при сжатии материала в плоекости листа.

				Табл	ица 1
Материал	<i>F</i> , мН	<i>l.</i> CM	δ, см	^σ раст' кПа	о ₁ , МПа, при рас- тяже-
		при	изгибе		нии
Картон машинного производства с массой 1 м², г: 175 200	62,5 62,5	2,5 2,5	0,0295 0,0370	2,16 1,37	19,0 17,2
Сульфатная небеленая целлюлоза* со стеленью помола, °ШР: 16 25 40 60	3,12 3,12 3,12 3,12 3,12	2,5 2,5 2,5 2,5 2,5	0,0161 0,0124 0,1140 0,1020	0,15 0,25 0,30 0,38	2,2 10,3 12,6 13,3

Отметим парадоксальность поведения целлюлозно-бумажных материалов при сжатии в плоскости листа. Под действием напряжений, в 1000 раз меньших тех, при которых на растяжение материал работает упруго, в зоне сжатия, видимо, возникает предельное состояние. Для расчета величины n_0 (см. уравнение (12)) может быть использовано отношение

$$n_0 = E_1/E_{\text{cw}}. \tag{17}$$

3,12 | 2,5 | 0,1020 | 0,38 | 13,3

В табл. 2 приведены уравнения для расчета коэффициентов K_i — $-K_3$ и значения коэффициентов при фиксированных n_0 , что позволяет получить зависимость $K = f(n_0)$, которая изображена на рис. 3.

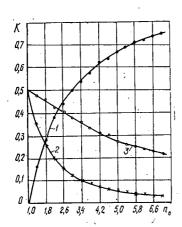


Рис. 3. Диаграмма расчета коэффициентов К в зависимости от n_0 : K_1 (1); K_2 (2); K_3 (3)

В табл. 3 представлены данные испытаний образцов следующих материалов: картон для гладких слоев гофрированного картона (крафтлайнер); сульфатная небеленая целлюлоза лабораторного изготовления с массой 1 м² 75 г и книжно-журнальная некаландрированная бумага для офсетной печати (1 — хвойная сульфатная целлюлоза — листвейная сульфатная целлюлоза + хвойная химикотермомеханическая масса (XTMM) + лиственная XTMM; 2 — лиственная сульфатная целлюлоза + хвойная XTMM + лиственная XTMM; 3 — хвойная сульфатная целлюлоза + лиственная сульфатная целлюлоза + хвойная ХТММ + лиственная ХТММ + термомеханическая масса (ТММ); 4 — лиственная сульфатная целлюлоза + хвойная ХТММ + лиственная ХТММ + ТММ;

^{*} Образцы лабораторного изготовления с массой 1 м2 75 г.

	Қоэф-	l					Знач	ения к	идиффес —	ентов г	при n ₀		•			
Эпюра нормальных напряжений*	фици- ент	1,4	1,8	2,2	2,6	3,0	3,4	3,8	4,2	4,6	5.0	5,4	5,8	6,2	6,6	7,0
ರ _{ex}	K ₁	0,17	0,28	0,38	0,44	0,50	0,54	0,58	0,62	0,64	0,67	0,69	0,71	0,72	0,74	0,75
a d	K ₂	0,35	0,26	0,20	0,15	0,12	0,10	0,09	0,07	0,06	0,06	0,05	0,04	0,04	0,03	0,0
© C	K ₃	0,48	0,46	0,42	0,41	0,38	0,36	0,33	0,31	0,30	0,27	0,26	0,25	0,24	0,23	0,22

*
$$E_{\text{C:K}} = 2 E_{\text{E:T}} - E_1$$
 (18); $a = \delta \frac{n_0 - 1}{n_0 + 1} = K_1 \delta$ (19); $d = \delta \frac{2}{(n_0 + 1)^2} = K_2 \delta$ (20); $c = \delta \frac{2 n_0}{(n_0 + 1)^2} = K_3 \delta$ (21); $n_0 = \sigma_{\text{pact}} \sigma_{\text{C:K}} = E_1 E_{\text{C:K}}$ (22)

								•	Таблиц	ица З
Матернал	$^{\delta}_{EI} \overset{\circ}{ imes}_{10^6}$	EI, MH X X cm²	Enr.	E _{c.K} .		a× × 10° × 3°	$\begin{pmatrix} \frac{a}{\delta EI} \\ \times 100, \ \% \end{pmatrix} \times$	× 3. × 10°. × 10°.	o1, Mīla	$E_{ m L}$
	š.,			при изгибе	ибе	- -		йdл	при растяжении	энии
Картон машинного производства с массой 1 м² г:	Υ					- Y	3			
175 200	295 370	1500,0 2290,0	4790 3630	4139 2699	1,3	38 95	13 26	25Î 342	19,0	5441 4566
Сульфатная небеленая целлюлоза со сте- пенью помола, "ШР:										
16 255	161	42,8	_	631	1,6	37 96	23	179	2,2	1025
40 60	114	72,5	3880 4410	1454	3,1	71	62 51	115	12,6	6306 6656
Книжно-журнальная бумага для офсетной печати с композицией по волокну:						_	_			
	116	49,6	2577	1666	2,1	41	35	110	13,0	3488
2	117	54,0		2084	9,1	27	53	126	14,2	3316
ന	132	68,4		1870	.5.	28	21	126	10,9	2874
\$	Ξ	78,2		4220	1,2	6	∞	114	17,8	4944
ಬ	124	8'.26		3811		∞	9	125	12,1	4305

5 — хвойная сульфатная целлюлоза — лиственная сульфатная целлюлоза — хвойная XTMM). Полученные нами экспериментальные данные показывают, что математический аппарат, разработанный для подвергаемых изгибу упругопластических материалов, можно использовать и для оценки предельного состояния в зоне сжатия при испытании целлюлозно-бумажных материалов на изгиб.

- СПИСОК ЛИТЕРАТУРЫ

[1]. Аким Э. М. Обработка бумаги.— М.: Лесн. пром-сть, 1979.—232 с. [2]. Бабурин С. В., Киприанов А. И. Реологические основы процессов целлюлозно-бумажного производства.— М.: Лесн. пром-сть, 1983.—192 с. [3]. Белянкин Ф. П. Пластические деформации дерева при изгибе // Тр. 1-й Всесоюз. конф. по прочности