УДК 544.362:544.51

H.C. Горбова 1 , Д.С. Косяков 2 , К.Г. Боголицын 1

¹Институт экологических проблем Севера УрО РАН

Горбова Наталья Сергеевна родилась в 1976 г., окончила в 1998 г. Архангельский государственный технический университет, кандидат химических наук, ученый секретарь Института экологических проблем Севера УрО РАН, доцент кафедры теоретической и прикладной химии АГТУ. Имеет более 40 печатных работ в области физической химии растворов лигнина и родственных ему соединений. E-mail: n.gorbova@iepn.ru

Косяков Дмитрий Сергеевич родился в 1972 г., окончил в 1994 г. Архангельский лесотехнический институт, кандидат химических наук, доцент кафедры теоретической и прикладной химии Архангельского государственного технического университета. Имеет около 70 печатных работ в области физической химии растворов лигиниа и родственных ему соединений.

E-mail: kosyakov@mail.ru

Боголицын Константин Григорьевич родился в 1949 г., окончил в 1971 г. Архангельский лесотехнический институт, доктор химических наук, профессор, директор Института экологических проблем Севера УрО РАН, заведующий кафедрой теоретической и прикладной химии Архангельского государственного технического университета, заслуженный деятель науки РФ, чл.-корр. РИА, академик МАНЭБ и РАИН, действительный член Международной академии лесных наук (IAWS). Имеет более 400 научных работ в области развития фундаментальных принципов «зеленой» химии и разработки физико-химических основ процессов переработки древесины. Е-mail: bogolitsyn@agtu.ru

ПРОТОЛИТИЧЕСКИЕ СВОЙСТВА РОДСТВЕННЫХ ЛИГНИНУ ФЕНОЛОВ В ЭЛЕКТРОННО-ВОЗБУЖДЕННЫХ СОСТОЯНИЯХ*

С использованием методов электронной абсорбционной и люминесцентной спектроскопии на основе цикла Ферстера определены константы кислотности ряда гваяцильных фенолов, моделирующих структурные фрагменты макромолекулы лигнина, в электронно-возбужденных состояниях (pK_a^*); показано значительное снижение pK_a родственных лигнину фенолов при фотовозбуждении, коррелирующее со свойствами napa-заместителя по отношению к фенольной гидроксильной группе.

Ключевые слова: лигнин, фенолы, электронно-возбужденные состояния, флуоресценция, константы кислотности.

При изучении реакционной способности и поведения лигнина в технологических процессах переработки растительного сырья, отбелки целлюлозных

9

²Архангельский государственный технический университет

^{*} Авторы выражают благодарность Российскому фонду фундаментальных исследований за финансовую поддержку выполненных исследований (проекты № 09-03-00809-а, № 07-03-05031-б, № 08-03-05064-б).

полуфабрикатов, исследовании механизма светостарения лигноцеллюлозных материалов необходимо учитывать роль электронно-возбужденных состояний фенольных структур. Они могут генерироваться как под действием электромагнитного излучения в УФ- и видимой областях спектра (фотовозбуждение), так и в ходе некоторых химических реакций. Известно, что перенос π -электронов в фенолах на уровни с более высокой энергией приводит к значительному возрастанию полярности молекулы [3], что неизбежно сопровождается изменением протолитических свойств фенольной гидроксильной группы. Авторами работы [4] установлено, что значения констант кислотности родственных лигнину мономерных гваяцильных фенолов в возбужденных состояниях рК $_a$ лежат в диапазоне от 2,4 до 5,0 и практически не коррелируют со свойствами napa-заместителя по отношению к фенольному гидроксилу, т.е. исследованные соединения в возбужденных состояниях являются значительно более сильными кислотами по сравнению с основным состоянием.

Резкое возрастание кислотности при фотовозбуждении может рассматриваться как одна из причин изменения оптических и прочностных свойств бумаги и картона при их светостарении. Снижение рН среды может приводить к развитию процессов деградации полисахаридов [6]. В связи с этим точное определение pK_a^* структурных фрагментов лигнина представляется актуальной задачей, решение которой и является целью настоящего исследования.

Для достижения поставленной цели нами использованы методы электронной абсорбционной и флуоресцентной спектроскопии, основанные на термодинамическом цикле Ферстера [2]:

$$N_a h v_{0-0(HA)} + \Delta H^{0*} = N_a h v_{0-0(A^-)} + \Delta H^0$$

или

$$\Delta H^{0*} - \Delta H^{0} = N_a (h v_{0-0(A^{-})} - h v_{0-0(HA)}), \qquad (1)$$

где

 ΔH^0 и ΔH^{0*} — стандартные мольные энтальпии диссоциации кислоты НА соответственно в основном и возбужденном состояниях;

 $h\nu_{0\text{-}0(\text{HA})}$ и $h\nu_{0\text{-}0(\text{A})}$ – энергии электронного перехода между нижними колебательными уровнями основного и возбужденного состояний кислоты (HA) и соответствующего аниона (A $\bar{\ }$).

Считая, что энтропии ионизации основного и возбужденного состояний молекулы равны, в уравнении (1) разность энтальпий можно заменить на разность энергий Гиббса кислотной ионизации, которые, в свою очередь, связаны с константой кислотности уравнением изотермы:

$$\Delta G^0 = 2,303RTpK_a$$
; $\Delta G^{0*} = 2,303RTpK_a^*$,

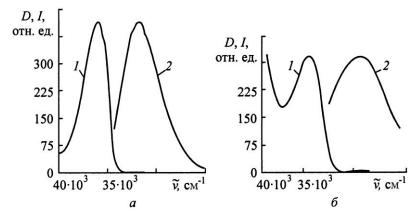
где R – газовая постоянная;

T – температура.

В этом случае

$$pK_a^* = pK_a + \frac{N_a h}{2.303RT} \left(v_{0-0(A^-} - v_{0-0(HA)}) \right).$$
 (2)

При переходе от частот к волновым числам (\tilde{v} , см⁻¹) при T = 298 К выражение (2) преобразуется к окончательному виду, пригодному для расчета:


$$pK_a^* = pK_a + 2,095 \cdot 10^{-3} (\widetilde{v}_{0-0(A^-)} - \widetilde{v}_{0-0(HA)}).$$
 (3)

Экспериментальная часть

В качестве объектов исследования выбраны 2-метоксифенол (гваякол) и семь его *пара*-производных, моделирующих структурные фрагменты макромолекулы хвойного лигнина: 3-метокси-4-окситолуол (креозол), 1-(3-метокси-4-оксифенил)-пропен-2(эвгенол), 1-(3-метокси-4-оксифенил)-пропен-1 (изоэвгенол), 3-метокси-4-оксибензальдегид (ванилин), 3-метокси-4-оксибензиловый спирт (ванилиновый спирт), 3-метокси-4-оксиацетофенон (ацетованилон), 3-метокси-4-оксикоричный альдегид (конифериловый альдегид). Эти модельные соединения использовались без дополнительной очистки в виде коммерчески доступных препаратов («Sigma-Aldrich», США) квалификации «ригит».

При исследовании молекулярных и анионных форм фенолов создавались фоновые концентрации 0,02 моль/л соляной кислоты и гидроксида тетраэтиламмония (purum, «Fluka») соответственно.

Спектры поглощения записывали на двухлучевом UV-VIS спектрофотометре UV-2550 («Shimadzu», Япония) в кварцевых односантиметровых кюветах относительно воды при комнатной температуре в диапазоне длин волн 220...400 нм с интервалом 0,1 нм. После сглаживания по Голею-Савицкому определяли положение полос поглощения с точностью ±0,1 нм. Спектры флуоресценции в диапазоне 300...500 нм получены в кварцевых прямоугольных односантиметровых флуориметрических («Hellma», Германия) на спектрофлуориметре Cary Eclipse («Varian», Австралия) при температуре (25±0,1) °C, поддерживаемой с помощью пельтьетермостатирующего устройства. Спектральная ширина щели в монохроматорах возбуждения и эмиссии составляла 5 нм. Длина волны возбуждающего излучения соответствовала положению максимума наиболее длинноволновой полосы поглощения соответствующего соединения, при этом концентрация раствора подбиралась таким образом, чтобы оптическая плотность не превышала 0,1 с целью избежания эффекта внутреннего фильтра [5]. Коррекцию спектров эмиссии осуществляли, используя кварцевый диффузор, характеризующийся равномерным светорассеянием в диапазоне длин волн 220...800 нм. Спектры растворителя, полученные в аналогичных условиях, вычитались из спектров исследуемых растворов с помощью программного обеспечения прибора. Положение полосы в эмиссионном спектре определяли с точностью ± 0.2 нм после сглаживания методом скользящего среднего.

Нормализованные спектры поглощения (1) и флуоресценции (2) ванилинового спирта в молекулярной (a) и анионной (δ) формах в водном растворе

Волновые числа, отвечающие 0–0 переходам $\pi \to \pi^*$, определяли как среднее арифметическое положения полос поглощения (вторичная бензоидная полоса) $\widetilde{V}_{abs}^{\max}$ и флуоресценции $\widetilde{V}_{em}^{\max}$ соответствующих частиц [7]:

$$\widetilde{\mathbf{v}}_{0-0} = (\widetilde{\mathbf{v}}_{abs}^{\max} + \widetilde{\mathbf{v}}_{em}^{\max})/2 . \tag{4}$$

Константы кислотности в основном состоянии pK_a взяты нами из работы [6].

Обсуждение результатов

Использование уравнения (4) для точного определения энергии 0—0 перехода подразумевает тождественность колебательной структуры и геометрии основного и синглетного возбужденного электронных состояний молекулы [7]. Именно такое поведение демонстрируют исследованные нами фенолы — эмиссионные полосы являются зеркальным отображением полос в спектрах поглощения, отличаясь несколько большей полушириной и потерей вибронной структуры (см. рисунок).

Полученные результаты измерений и расчетов по уравнению (3) представлены в таблице.

Из полученных данных видно, что все исследованные фенолы при фотовозбуждении резко усиливают свои кислотные свойства, в то же время наблюдается очевидное несоответствие величин pK_a^* результатам, которые получены авторами работ [1, 4]. Константы кислотности гваякола и его производных с неполярными заместителями достаточно малы, причем наблюдается взаимосвязь между протолитическими свойствами и типом группировки в *пара*-положении к фенольной гидроксильной группе. Соединения, содержащие электроноакцепторную карбонильную группу, сопряженную с ароматическим ядром (ванилин, ацетованилон, конифериловый альдегид),

Спектральные характеристики и показатели констант кислотности в основном и возбужденном состояниях некоторых гваяцильных фенолов

Соединение	$\widetilde{v}_{abs}^{\mathrm{max}}$	$\widetilde{V}_{em}^{\mathrm{max}}$	\tilde{v}_{0-0}	pK_a	pK_a^*
	cm ⁻¹			P**a	PTa
Гваякол	36443/34638	32712/32154	34577/33396	10,04	7,56
Креозол	35765/33818	32051/31066	33908/32442	10,40	7,32
Эвгенол	35790/33863	32061/30581	33926/32222	10,15	6,57
Изоэвгенол	33411/31887	29282/27129	31346/29508	10,11	6,25
Ванилин	32415/28769	23468/23901	27942/26335	7,40	4,02
Конифериловый альдегид	29585/24807	21141/20479	25363/22643	7,94	2,23
Ванилиновый спирт	35958/34223	32247/29188	34102/31705	9,80	4,77
Ацетованилон	32982/29240	24492/24213	28737/26726	7,90	3,68

 Π р и м е ч а н и е . В числителе приведены данные для нейтральной молекулы, в знаменателе для анионов.

демонстрируют наибольшую способность к кислотной ионизации в возбужденном состоянии, так же как и в основном состоянии. Тем не менее, помимо электроотрицательности napa-заместителя, на процессы кислотной диссоциации фенолов в возбужденном состоянии значительное влияние оказывают и другие факторы. Так, очевидна взаимосвязь изменения pK_a при фотовозбуждении с длиной боковой цепи. Эвгенол и изоэвгенол, слабо отличающиеся по протолитическим свойствам от гваякола и креозола в основном состоянии, проявляют существенно большие кислотные свойства в возбужденном состоянии, аналогичный эффект наблюдается для ванилина и ацетованилона. Наиболее сильной кислотой из исследованных электронновозбужденных соединений является конифериловый альдегид, имеющий в napa-положении к фенольной гидроксильной группе как пропановую цепочку с сопряженной двойной углерод-углеродной связью, так и карбонильную электроноакцепторную группу.

Основной причиной расхождения приведенных данных с имеющимися в литературе представляются ошибки в регистрации спектров флуоресценции на установках с мощными постоянными источниками излучения, применявшимися ранее, что приводило к значительному фоторазложению образцов и фотоокислению их растворенным кислородом (авторы ранних работ не использовали дегазацию раствора, отмечая, что присутствие растворенного кислорода не влияет на положение и интенсивность полос эмиссии). Использованный нами люминесцентный спектрометр оснащен импульсным ксеноновым источником света, интегральная мощность которого не превышает 20 Вт, что в значительной степени позволяет предотвратить развитие фотохимических процессов. Тем не менее, даже при относительно кратковременном воздействии УФ-облучения нами отмечено накопление сильно флуоресцирующих побочных продуктов в щелочных растворах гваякола, эвгенола и изоэвгенола, дающих полосы испускания в более длинноволновой области $(\lambda^{max} > 350 \text{ нм})$, маскирующие флуоресценцию исследуемого соединения. Данный факт объясняет и полное противоречие люминесцентных свойств модельных соединений лигнина, приведенных в работах [1, 4].

СПИСОК ЛИТЕРАТУРЫ

- 1. *Бурлаков*, *В.М.* Энергетика обменных процессов в лигнине. Спектрально-люминесцентные характеристики натронного лигнина и некоторых модельных соединений в молекулярной и ионизированной формах при температурах 295 и 77 К [Текст] / В.М. Бурлаков, Э.И. Чупка // Химия древесины. 1982. № 4. С. 35–42.
- 2. Förster, T. Elektrolytische Dissoziation angeregter Molecüle [Text] / T. Förster // Zeitschrift für Elektrochemie. 1950. Bd. 54, N1. S. 42–46.
- 3. *Klessinger*, *M*. Excited states and photochemistry of organic molecules / M. Klessinger, J. Michl. VCH publishers, 1995. 537 p.
- 4. *Konschin, H.* Protolytic dissociation of electronically excited phenols related to lignin [Text] / H. Konschin, R. Lunnalc, F. Sundholm // Suom. Kem. Tideon. 1973. Vol. 82, N1. P. 8–14.
- 5. *Lakowicz, J.R.* Principles of fluorescence spectroscopy [Text] / J.R. Lakowicz. New York: Kluwer, 1999. 698 p.
- 6. Ragnar, M. pK_a -values of guaiacyl and syringyl phenols related to lignin [Text] / M. Ragnar, C.T. Lindgren, N.-O. Nilvebrant // Journal of Wood Chemistry and Technology. 2000. Vol. 20, N 3, P. 277–305.
- 7. *Valeur*, *B*. Molecular fluorescence. Principles and applications [Text] / B. Valeur. Weinheim: Wiley-VCH Verlag, 2002. 381 p.

Поступила 26.10.09

N.S. Gorbova¹, D.S. Kosyakov², K.G. Bogolitsyn¹

¹Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences ²Arkhangelsk State Technical University

Protolytic Properties of Phenols Related to Lignin in Electronically Excited States

The acidity constants of some guaiacylic phenols, modeling the lignin macromolecule structural fragments in electronically excited (pK_a^*) were obtained using the methods of electronic absorption and luminescence spectroscopy methods based on the Foerster cycle. A significant decrease of pK_a values of lignin related phenols under photoexcitation correlating with the properties of para-substitute towards phenolic hydroxyl group is shown.

Keywords: lignin, phenols, electronically excited state, fluorescence, acidity constants.