Таблица 4

Коэффициенты уравнений регрессии

Y	b	<i>b</i> 1	<i>b</i> ₂	b3	b.	bs	r _M	m, %		
Уравнение (1).										
Р L ap Ap П R E ₁ E ₂ ^е р EI Еизт С	135.8 11470 47.71 150,3 1121 304.5 6345 796.4 2.794 145.4 7016 2376	15.53 994.3 2.358 39.75 75.56 45.94 271.4 235.0 0.475 34.59 627.4 29.37	$ \begin{array}{ } -25,18 \\ -2147 \\ -7,06 \\ -21,82 \\ -409,4 \\ -144,0 \\ -2542 \\ -265,6 \\ -0,125 \\ -85,99 \\ -1315 \\ -47,31 \\ \end{array} $	$\begin{array}{ } -43.36\\ -4161\\ -30.54\\ -61.69\\ -404.2\\ -61.20\\ -2029\\ -313.8\\ -0.725\\ -29.45\\ -29.45\\ -2697\\ -865.7\end{array}$	$\begin{array}{c} -0.130\\ -6.40\\ 0.026\\ -0.771\\ 1.701\\ 1.172\\ 7.806\\ 12.75\\ -0.011\\ -0.347\\ 9.987\\ 3.984\end{array}$	0,0034 0,420 0,0053 -0,0045 0,0652 0,0297 1,061 0,382 -0,0002 0,0047 1,181 -0,093	0,901 0,933 0,953 0,750 0,853 0,349 0,888 0,600 0,430 0,602 0,958 0,702	$\begin{array}{c c} 5.0\\ 4.5\\ 6.1\\ 16.1\\ 6.5\\ 5.6\\ 7.0\\ 21.5\\ 7.6\\ 5.9\\ 4.2\\ 6.1\end{array}$		
Уравнение (2)										
Р L Ар	79,39 5784 189,6	0.271 0.228 0.200	0,141 0,145 0,039	-1,733 -1,883 -2,562	$\begin{array}{c} 0.001 \\ 0.016 \\ -0.072 \end{array}$	0,071 0,091 0,058	0,940 0,980 0,780	5,4 5,0 15,1		
$\begin{array}{c} R\\ \Pi\\ E_1\\ E_2\\ \varepsilon_p \end{array}$	11,99 266,0 98,91 7003 10,21	$\begin{array}{c} -0.250 \\ -0.322 \\ -0.063 \\ 0.730 \\ 0.268 \end{array}$	$\begin{array}{r}0.486 \\0.532 \\0.147 \\ 0.183 \\0.011 \end{array}$	$ \begin{array}{r}1.032 \\3.753 \\1.043 \\1.892 \\0.883 \end{array} $	0,193 0,261 0,105 0,279 0,131	$\begin{array}{c} 0.286\\ 0.127\\ 0.490\\0.281\\0.149\end{array}$	0,337 0,941 0,930 0,517 0,345	5,4 7,8 7,5 18,2 8,1		
$EI \\ G_{0}$	35,03	0.493	0,300	-0,346 -2.632	$ -0.060 \\ 0.145$	0,138	$0,543 \\ 0.751$	6.3 5.8		

погрешность аппроксимации *m* (различие между экспериментальными и расчетными величинами не превышает 6...8 %) дают основание говорить о существовании множественной связи фундаментальных свойств с характеристиками деформативности и прочности для неразмолотой сульфатной целлюлозы и возможности их прогнозирования.

СПИСОК ЛИТЕРАТУРЫ

[1]. Ерыхов Б. П., Фляте Д. М. Применение метода крутильных колебаний для определения упругих характеристик бумаги // Вопросы долговечности документа.— М.; Л., 1973.— С. 77—81. [2]. Иванов С. Н. Определение межволоконных сил связи в бумаге // Бум. пром-сть.— 1948.— № 3.— С. 6—9. [3]. Кларк Д.ж. Технология целколозы.— М.: Лесн. пром-сть, 1983.— 456 с. [4]. Комаров В. И., Фляте Д. М. Определение жесткости бумаги при изгибе // Целлюлоза, бумага и картон.— 1971.— № 30.— С. 11—13. [5]. Фудзии Т., Дзако М. Механика разрушения композиционных материалов.— М.: Мир, 1982.— 232 с. [6]. Хабаров Ю. Г., Комаров В. И. Оценка последовательности разрушения целлюлозных волокнистых материалов // Бум. пром-сть.— 1986.— № 6.— С. 16—17.

Поступила 15 марта 1993 г.

УДК 547.458.81 518.7

ИССЛЕДОВАНИЕ СТРУКТУРНОГО СОСТОЯНИЯ ЦЕЛЛЮЛОЗЫ РАННЕЙ И ПОЗДНЕЙ ДРЕВЕСИНЫ СОСНЫ И ЕЛИ МЕТОДАМИ РЕНТГЕНОГРАФИИ

В. В. ПЕТРОВА, М. В. МЕЛЕХ

Петрозаводский государственный университет

Изучение структуры целлюлозы различного происхождения как самовоспроизводящегося полимера с широким спектром использования обусловлено целым рядом причин, главной из которых является возможность контроля и предсказания изменений физико-химических свойств в результате тех или иных обработок.

Получение структурных характеристик на атомно-молекулярном уровне в основном проводится на различных видах модифицированной высококристаллической целлюлозы, дающих достаточно контрастную дифракционную картину [11]. Структура целлюлозы в древесине [3, 5], лубе и корке в нативном состоянии до сих пор описана. недостаточно, так как дифракционная картина от этих объектов малоконтрастна и содержит небольшое количество текстурированных отражений. Низкая симметрия пространственной решетки целлюлозы предполагает широкий спектр рефлексов. Экспериментально регистрируются наиболее интенсивные отражения, так как слабые рефлексы вуалируются высоким диффузным фоном и рассеянием от аморфной составляющей. Таким образом, изучение подобных объектов требует индивидуально модифицированных нестандартных методик.

В данной работе предпринята попытка при помощи нового метода рентгенографии (8) получить структурные характеристики целлюлозы из древесины ели и сосны, имеющих различные скорости роста. Нами предложен способ получения рабочих дифрактограмм, отличающийся от используемых ранее [3, 5]. Он состоит в том, что исследования выполняются только на тангенциальных срезах, приготовленных из ранней и поздней древесины. Толщина среза определяется шириной годичного кольца, а ширина и длина — условиями рентгенографирования. Тем самым обеспечивается возможность их раздельного изучения. В отличие от существующих способов, когда съемка осуществляется в геометрии на отражение, рентгенографирование тангенциальных срезов производится в геометрии на прохождение в двух положениях, отличающихся друг от друга поворотом на 90°. При этом в одном случае волокна располагаются параллельно оси гониометра, а в другом — перпендикулярно, и дифракционная картина претерпевает существенные изменения. Когда ось волокна параллельна оси гониометра, наблюдается обычная картина рассеяния, аналогичная дифракционной при съемке на отражение: присутствуют рефлексы целлюлозы (101), (101), (002), (040)

Рентгенограммы поздней древесины сосны в геометрии на просвет при расположении волокон препарата параллельно (а) и перпендикулярно (б) оси гониометра (рисунок *a*). Когда препарат поворачивают в плоскости среза на 90°, картина резко меняется: вышеуказанные отражения исчезают, за исключением (040), интенсивность I которого значительно возрастает; появляются рефлексы типа (0*k*0) и ряд других, например (133), (252) и т. д. (рисунок δ).

Использование этих условий рентгенографирования дает возможность получать на сводной рентгенограмме до 12...15 отражений, что позволяет производить расчет не только стандартных структурных характеристик, например степени кристалличности, но и периодов элементарной ячейки нативной и модифицированной древесной целлюлозы с помощью ЭВМ.

Указанная процедура обеспечивает более высокую корректность данных, чем существующие [3, 5], так как физические характеристики относятся к одному и тому же облучаемому объему со строго индивидуальными параметрами надмолекулярной структуры. При необходимости можно провести рентгенографирование образца в более распространенной геометрии на отражение, не изменяя при этом его положение в держателе прибора.

Таким образом, данная методика исследования препаратов нативной древесной целлюлозы имеет ряд преимуществ:

гарантирует получение сводной рентгенограммы с достаточным количеством рефлексов, которая позволяет корректно определить структурные характеристики препаратов;

дает возможность установить физические характеристики целлюлозы поздней и ранней древесины в отдельности;

позволяет изучать структурные неоднородности образца, изменяя облучаемый объем и фиксируя его;

существенно сокращает время съемки;

применима для любого волокнистого неразмолотого образца, прошедшего специальную обработку (гидролиз, экстракция, варка и т. д.). Исследования проводили на образцах древесины сосны и ели с

Исследования проводили на образцах древесины сосны и ели с обычной скоростью роста (№ 1, 3) и быстрорастущих за счет внесения удобрений (№ 2, 4). Возраст ели составлял около 100 лет, сосны являлись молодыми деревьями.

Кроме того, препараты из древесины ели быстрорастущей и обыкновенной подвергали гидролизу и оценивали их физические параметры. Гидролиз проводили в 4 %-й HCl в течение 4 ч³30 мин на кипящей водяной бане с последующей пятикратной промывкой дистиллированной водой и промывкой в спирте и эфире, чтобы уменьшить деформирующее влияние удаления воды при повышенной температуре на физические характеристики древесных образцов.

Готовили тангенциальные срезы ранней и поздней древесины отдельно в пределах одного годичного кольца по 2—3 образца для каждого изучаемого дерева. Рентгенографирование осуществляли по вышеописанной методике, но для увеличения статистических данных проводили съемки и на отражение. Таким образом, каждый образец рентгенографировали в четырех разных положениях. Результаты усредняли.

Критерием правильности методики являлся факт сходимости значений степени кристалличности K [9] для трех позиций, получаемых при съемке на отражение в двух положениях волокон относительно оси гониометра и съемке на просвет, когда волокна параллельны оси гониометра. Например, ель быстрорастущая, поздняя древесина: 0,63, 0,63, 0,63 (первый образец); 0,65, 0,66, 0,62 (второй образец). Погрешность в определении степени кристалличности составляет $\pm 0,02$ при среднем значении K = 0,64.

Рентгенографирование образцов осуществляли на дифрактометре ДРОН-2.0, источником рентгеновского излучения служила трубка

БСВ-27 с медным анодом. Режим работы трубки: U = 26 кВ, I = 13 мА. В качестве кристалла-монохроматора использовали пиролитический графит. Информацию выводили на диаграммную ленту либо на перфоленту с последующей обработкой на ЭВМ. Интервал углов съемки (угол дифракции) 2Θ составлял 6...100°. Постоянство интенсивности первичного пучка контролировали съемкой образца плавленого кварца под углом $2\Theta_{.} = 90^{\circ}$.

Из экспериментальных рентгенограмм определяли угловые положения рефлексов, их полуширину l; рассчитывали степень кристалличности, периоды элементарной ячейки целлюлозы (а, б, с), размеры областей когерентного рассеяния L (OKP) в продольном (по отражению (040)) и поперечном (002) направлениях по формуле Дебая— Шеррера [1]. Нужно отметить, что методику разделения уширения линий за счет малости блоков и микроискажений методом аппроксимации [2] и способом, изложенным в [4] применительно к модифицированной целлюлозе, нельзя использовать без применения ЭВМ не только для нативной целлюлозы древесины, но и для рафинированной высококристаллической, так как экспериментально выделить отражение (004) и даже (080) невозможно. Следовательно, по формуле Дебая — Шеррера получают заниженные результаты для L_(hkl) (h, k, l — индексы отражений), поэтому ею можно пользоваться только для сравнительного анализа, чтобы выявить тенденцию изменения структуры кристаллических областей.

Приведенные в табл. 1 структурные параметры показывают, что целлюлоза древесины сосны с обычной скоростью роста более сформирована, чем целлюлоза быстрорастущей. Это следует из значений полуширины рефлекса (002) и степени кристалличности. У поздней древесины степень кристалличности несколько выше как для сосны с обычной скоростью роста, так и быстрорастущей. В поперечном направлении размеры областей когерентного рассеяния практически одинаковы.

Физические характеристики целлюлозы из древесины ели (№ 3, 4) противоположны сосновой и изменяются подобно углу рассеяния тек-

Таблица 1

	Сосна		Ель				
Парамата			до гид	ролиза	после гидролиза		
Параметры	№ 1	№ 2.	N: 3	.№ 4	№ 3	№ 4	
20 ₍₀₀₂₎ , град	$\frac{\underline{22.20}}{\underline{22.20}}$	$\frac{22.20}{22.20}$	22,25 22,25	$\frac{22,30}{22,30}$	$\frac{22,35}{22,40}$	<u>22,40</u> 22,35	
l ₍₀₀₂₎ , град	<u>2.8</u> 2.8	<u>2,9</u> 2,9	<u>2,9</u> 2,9	<u>2,8</u> 2,8	<u>2.7</u> 2,8	<u>2,4</u> 2,6	
L ₍₀₀₂₎ , Å	<u>30</u> 30	<u>29</u> 29	<u>29</u> 29	<u>-30</u> 30	· <u>31</u> 30	<u>34</u> 32	
К	0,56 0,54	<u>0,52</u> 0,51	<u>0,41</u> 0,48	<u>0,57</u> 0,57	<u>0,49</u> 0,53	<u>0,67</u> 0,64	
2 Ө₍₀₄₀₎, град	<u>34,60</u> 34,60	<u>34,70</u> 34,65	$\frac{34,60}{34,60}$	$\frac{34,65}{34,60}$	$\frac{34,60}{34,60}$	<u>34,70</u> 34,65	
l ₍₀₄₀₎ , град	$\begin{array}{c} \underline{1,1} \\ 1.1 \end{array}$	$\frac{1.1}{1.1}$	$\begin{array}{c} \underline{1,3}\\ 1,3 \end{array}$	$\frac{1,1}{1,2}$	<u>1,3</u> 1,3	$\frac{1.1}{1.2}$	
L (040), Å	79 79	<u>79</u> 79	<u>67</u> 67	<u>79</u> 73	<u>67</u> 67	$\frac{79}{73}$	

Структурные характеристики поздней (числитель) и ранней (знаменатель) древесины сосны и ели

119

стуры [7]. Целлюлоза поздней и ранней древесины быстрорастущей ели с одинаковыми параметрами (полуширина отражения (040) больше для ранней) явно более совершенна, чем целлюлоза ели обыкновенной. Для последней наблюдаются различия в степени кристалличности поздней и ранней древесины (для ранней на 15 % выше).

Следует отметить, что размеры областей когерентного рассеяния в направлении [001] практически одинаковы для всех исследуемых образцов и составляют около 30 Å, что примерно в два раза меньше, чем для хлопковой целлюлозы [6]. Что касается размеров ОКР в продольном направлении [010], то они равны для образцов сосны и поздней древесины быстрорастущей ели (~80 Å), тогда как для ели с нормальной скоростью роста $L_{(040)} = 67$ Å. Полученные результаты, по-видимому, показывают индивидуальные особенности строения древесной целлюлозы в нативном состоянии и отражают зависимость структурных характеристик от условий произрастания.

Значения структурных характеристик целлюлозы ели до и после гидролиза (табл. 1) свидетельствуют о том, что гидролиз вносит существенные изменения в параметры. Исключение составляют положение и полуширина рефлекса (040), которые остаются постоянными.

Максимум отражения (002) после гидролиза смещается в сторону бо́льших углов, т. е. период элементарной ячейки с приближается к таковому для хлопковой целлюлозы [6]. Наблюдается уменьшение полуширины рефлекса (002), а следовательно, изменение размеров ОКР в поперечном направлении. В результате гидролиза происходит значительное увеличение K, но в разной степени для ранней и поздней древесины. Так, для ранней древесины ели степень кристалличности после гидролиза увеличивается на 10 %, а для поздней — на 18 %, для ели быстрорастущей соответственно примерно на 15 и 18 %.

Таким образом, наибольшим изменениям подвергается поздняя древесина как быстрорастущей, так и обыкновенной ели. Необходимо подчеркнуть, что степень кристалличности для целлюлозы поздней древесины ели быстрорастущей после гидролиза не отличается от хлопковой [6].

Проведены индицирование отражений и расчет периодов элементарной ячейки и угла моноклинности β для целлюлозы поздней и ранней древесины вышеуказанных деревьев на ЭВМ СМ-4 с использованием пакета программ. Следует отметить, что при индицировании рефлексов целлюлозы возникают довольно существенные трудности, обусловленные неоднозначностью приписываемых им индексов, что является следствием взаимного наложения линий, расположенных под очень близкими углами.

В качестве стартовых данных для работы программ выбраны следующие исходные отражения: (002), (040), (133) и (252). Символы двух последних рефлексов получены при индицировании сводных рентгенограмм, составленных по результатам рентгенографирования трех взаимно перпендикулярных срезов на начальной стадии исследования. Исключение из исходных данных отражений (101) и (101), расположенных под довольно малыми углами и слабо разрешенных, привело к существенному уменьшению погрешности в определении параметра *а*, так как максимумы (133) и (252) интенсивны и расположены под достаточно большими углами. Таким образом, погрешность в определении параметра *a* составила $\pm 0,08$ Å, против $\pm 0,12$ Å. Погрешности в опре-

делении в и с не изменились и равны соответственно $\pm 0,01$ и $\pm 0,02$ Å.

Значения периодов решетки, угла моноклинности β , а также среднеквадратичное отклонение Δd , минимальное для ряда вариантов расчета, приведены в табл. 2.

Отметим особенность, характерную для расчетов периодов элементарной ячейки целлюлозы. Наблюдаемая разница в дифракционных спектрах, полученных от разных срезов одного и того же дерева, приводит к расхождениям в результатах расчетов. Значения периодов элементарной ячейки быстрорастущей ели в нативном состоянии рассчитывались для тангенциальных срезов ранней и поздней древесины, поперечного среза и по усредненному спектру отражений по всем срезам. Покажем, как изменяются значения параметров в зависимости от положения максимумов. Например, положение рефлекса (133), из которого рассчитывается значение a, изменяется от 44,9 до 45,2° по шкале 20. Отсюда а лежит в интервале 8,13...8,35 А, что значительно превышает ошибку эксперимента. Учитывая вышесказанное, желательно сравнивать вычисленные значения периодов решетки целлюлозы только для одинаковых срезов или по усредненному спектру.

Как и следовало ожидать, анализ структурных характеристик показал, что периоды ячейки поздней и ранней древесины одного дерева мало отличаются как друг от друга, так и от дерева к дереву в нативном состоянии. Исключение составляет целлюлоза сосны обыкновенной, для которой *а* выходит за пределы ошибки. Например, спектр отражений, полученный при рентгенографировании ранней древесины сосны № 1, содержит максимальное число рефлексов. Это приводит к более точным результатам при расчете, но если максимумы размыты (линии не разрешены), то из-за неточности в определении их положений эффект может быть и обратным.

Как видно из данных табл. 2, гидролиз приводит к уменьшению периода *с*, что связано с изменением положения максимума (002) целлюлозы ели № 3, 4. Одновременно происходит увеличение периода *а* целлюлозы ели № 4.

Если сравнивать эти результаты с данными работы [10] для хлопковой целлюлозы (a = 8,17 Å; s = 10,34 Å; c = 7,87 Å; $\beta = 83,5^{\circ}$), то можно сделать вывод, что все исследуемые образцы (за исключением сосны № 1) поздней и ранней древесины существенно отличаются только периодом *с* и углом моноклинности β . Значение *с* обусловлено положением рефлекса (002): для хлопковой целлюлозы $2\Theta = 22,7^{\circ}$; для

Таблица 2

Пара- метры	Co	сна	Ель					
		N <u>9</u> 2	до гиді	оолиза	после гидролиза			
	№ 1		N• 3	Nº 4	N <u>⊳</u> 3	№ 4		
a, Å	<u>8,14</u>	<u>7,95</u>	<u>8,15</u>	<u>8,15</u>	<u>. 8.18</u>	<u>.8,36</u>		
	8,08	7,89	8,18	8,13	8,18	8,26		
в, Å	<u>10,33</u>	<u>10,58</u>	<u>10,36</u>	<u>10,35</u>	<u>10,37</u>	<u>10,33</u>		
	10,34	10,36	10,36	10,34	10,36	10,35		
с, Å	<u>8,02</u> 8,03	<u>8,03</u> 8,07	$\frac{8,00}{8,02}$	<u>8,00</u> 8,03	<u>7,94</u> 7,97	<u>7,95</u> 7,97		
β, град	<u>85,2</u>	<u> 85,0 </u>	<u>85,8</u>	<u>85,9</u>	<u>85,4</u>	<u>86,8</u>		
	85,0	<u> 84,9 </u>	85,8	84,9	85,8	85,6		
Δd	<u>0,233</u>	<u>0,203</u>	<u>0,115</u>	<u>0,134</u>	<u>0,128</u>	<u>0,096</u>		
	0,268	0,226	0,143	0,132	0,134	0,098		

Периоды решетки целлюлозы поздней (числитель) и ранней (знаменатель) древесины сосны и ели

целлюлозы из древесины ели и сосны до гидролиза 20 составляет 22,2—22,3°; после гидролиза — 22,4°.

Хотя сравнение с литературными данными [10] является достаточным критерием того, что расчеты периодов ячейки для древесных целлюлоз выполнены вполне достоверно, были произведены аналогичные вычисления на ЭВМ СМ-4 по другой программе. В качестве стартовых данных использовали строго заданные (а не пробные, как в предыдущей программе) индексы отражений. Полученные значения практически не отличались от рассчитанных по первой программе. Это еще раз подтверждает корректность эксперимента по нахождению линейных и угловых констант элементарной ячейки древесных целлюлоз.

Представленные результаты иллюстрируют возможность использования и надежность методов рентгенографии для изучения структуры целлюлозы древесины в нативном состоянии. Кроме того, они подтверждают идею [11] о том, что все виды нативной целлюлозы кристаллизуются одним и тем же способом, однако имеют индивидуальные особенности. Для объяснения наблюдаемых между ними различий необходима дополнительная информация, которая может быть получена другими физическими методами исследования (например, электроно- или нейтронография, ИК-спектроскопия).

Дальнейшее совершенствование рентгенографических экспериментов следует направить на повышение разрешающей способности дифрактограмм в области больших брэгговских углов, а также включение в эксперимент дифракционных картин рассеяния в области малых и средних углов, которые дают сведения о надмолекулярной структуре этих объектов [1]. В то же время нельзя не учитывать зависимость результатов эксперимента от способа приготовления препаратов и используемых схем рентгенографирования.

СПИСОК ЛИТЕРАТУРЫ

[1]. Гинье А. Рентгенография кристаллов.— М.: Гос. изд-во физ-мат. лит., 1961.— 604 с. [2]. Горелик С. С., Расторгуев Л. Н., Скаков Ю. А. Рентгенографический и электронно-оптический анализ.— М.: Металлургия, 1970.— 368 с. [3]. Иванов М. А., Шашилов А. А., Королев М. И. Анализ рассеяния рентгеновских лучей целлюлозой при 20 = 32° для Си-излучения // Химия древесины.— 1980.— № 5.— С. 5—11. [4]. Иоелович М. Я., Веверис Г. П. Изучение размеров и дефектности кристаллических областей целлюлозы // Химия древесины.— 1985.— № 6.— С. 30—34. [5]. Иоелович М. Я., Тупурейне А. Д., Веверис Г. П. Изучение кристаллической структуры целлюлозы в растительных материалах // Химия древесины.— 1989.— № 5.— С. 3—9. [6]. Мелех М. В., Петрова В. В., Гелес И. С. Исследование целлюлозы коры ели методами рентгеноструктурного анализа // Химия древесины.— 1987.— № 6.— С. 52—58. [7]. Петрова В. В., Мелех М. В., Чистякова Э. Л. Изучение текстуры древесных целлюлоз методами дифракции рентгеновских лучей // Химия древесных целлюлозолов сособ определения физических параметров надмолекулярной структуры древесных целлюлоз / И. С. Гелес, В. В. Петрова, М. В. Мелех.— Принято 26.09.91. [9]. Јау те G., Кпоlle Н. Beitrag zurempirischen гопtgenographischen Bestimmung des Kristallinitatsgrades cellulosischer staffe // Раріег.— 1964.— Vol. XIII.— Р. 471.—476. [10]. Wellard H. J. Variation in the Latitice Spacing of cellulose // J. Polimer Science.— 1954.— Vol. XIII.— Р. 471. 476. [17]. Woodcock G., Satko A. Paking analysis of carbohydrates and polysacarides. 11. Molekular and Crystal structure of Native ramie cellulose // Makromolecules.— 1980.— Vol. 13.— Р. 1183—1187.

Поступила 25 февраля 1993 г.