
И.Ю. Адамович, Е.Н. Самошкин

Брянская государственная инженерно-технологическая академия

Адамович Игорь Юрьевич родился в 1971 г., окончил в 1994 г. Брянский государственный педагогический институт, соискатель кафедры садово-паркового и ландшафтного строительства Брянской государственной инженерно-технологической академии. Имеет 9 печатных трудов по изучению влияния ионизирующего излучения на микотрофность хвойных.

E-mail: BGITAkafSPLS@yandex.ru

МИКОРИЗЫ СОСНЫ ОБЫКНОВЕННОЙ ПРИ РАЗЛИЧНЫХ УРОВНЯХ РАДИОАКТИВНОГО ЗАГРЯЗНЕНИЯ

Показано, что невысокие дозы радиоактивного излучения стимулируют развитие микориз сосны обыкновенной, сильные угнетают их.

Ключевые слова: мощность экспозиционной дозы, микотрофность, грибные чехлы корневых окончаний.

В настоящее время весьма важны мероприятия по реабилитации хронически загрязненных лесных массивов в результате аварии на ЧАЭС. В Беларуси разработаны концепция «биологической перегородки» о регулировании обмена радиоактивными веществами между почвой и произрастающей на ней растительностью [6] и технологии лесовосстановления на радиоактивно загрязненных лесных землях.

Сосна обыкновенная — высокомикотрофный вид, обычно произрастающий в симбиозе с грибами. Появились исследования о существенном влиянии промышленного загрязнения на рост и развитие микоризного гриба [2, 3], но действие радиации практически не изучено.

Исследования проводили в сосняках юго-западного региона Брянской области: тип леса бруснично-черничный, почва среднеподзолистая песчаная, ТУМ A_2 – A_3 , возраст насаждений 40... 60 лет. Пробные площади (ПП) закладывали в древостоях с различной МЭД: 1 – сравнительно невысокая (на поверхности почвы 239,2 на высоте 1 м от земли 149,6 мкР/ч), 2 – средняя (528,4 и 352,2 мкР/ч соответственно), 3 – высокая (737,6 и 499,2 мкР/ч). Контроль – сосняки с фоновой МЭД 10 мкР/ч (Учебно-опытный лесхоз Брянской государственной инженерно-технологической академии).

Изучали микоризы на корнях 2-летнего самосева сосны, растущего под пологом насаждений. Материал собран в конце вегетации, образцы с ПП брали в течение 4...7 дн. из 25-сантиметрового верхнего слоя почвы. При определении типов микориз использовали классификацию T. Dominik [7], расширенную И.А. Селивановым [5]. Анатомическое строение исследовали по методикам И.А. Селиванова [5] и Д.В. Веселкина [3]; степень развития сети Гартига – по методике, разработанной нами: 0 баллов – полное отсутствие гифов грибов в межклетниках первичной коры; 1 – гифы оплетают менее 50 % клеток паренхимы первичной коры корня; 2 - сеть Гартига занимает 50...75 % паренхимы первичной коры корня, гифы не проникают во все слои клеток; 3 – гифы занимают свыше 75 % паренхимы первичной коры корня, проникают во все слои клеток. Измеряли радиус центрального цилиндра, толщину паренхимы первичной коры и грибного чехла. Препараты просматривали под микроскопами МБИ-6 и Микмед-1 с цветной микротелевизионной системой. Анатомо-морфологическое строение микоризного корневого окончания самосева сосны показано на рис.1.

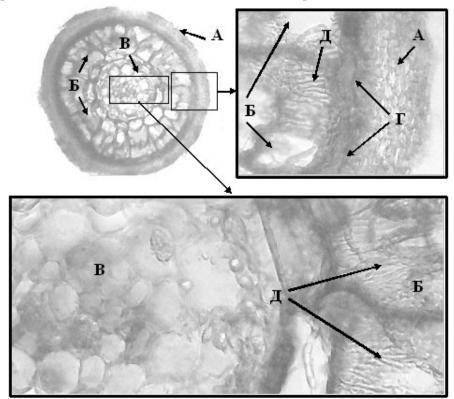


Рис. 1. Поперечный разрез микоризного корневого окончания сосны обыкновенной: A — грибной чехол, B — живые клетки первичной коры, B — центральный цилиндр, Γ — таниновые клетки первичной коры, Π — гифы сети Γ артига

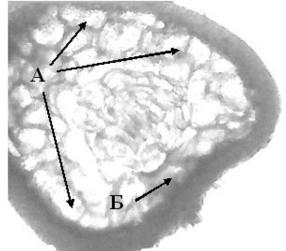
В результате исследования микориз обнаружены плектенхиматические (типы В, С, D, А), псевдопаренхиматические (типы F, H, G), двойные (типы P, K) и бесструктурные (тип RS) чехлы. На всех ПП преобладают плектенхиматические чехлы, наиболее распространен тип В, в контроле он составил 70 % от общего числа микориз, при сравнительно невысокой МЭД (239,2 мкР/ч) — на 13 % меньше, но резко (на 20 %) возросла доля псевдопаренхиматических чехлов (достигает максимума), прежде всего второго по степени распространенности типа F (30 %). При среднем уровне МЭД (528,4 мкР/ч) количество псевдопаренхиматических чехлов составило 17 %, плектенхиматических равно контролю, а при высокой МЭД (737,6 мкР/ч) на 10 % меньше.

Процент бесструктурных чехлов возрастает с увеличением МЭД: в контроле – 3, в зоне высокой МЭД – 17. Тип А плектенхиматических чехлов фиксируется только в зоне с высокой МЭД: грибной чехол покрывает корень не сплошь, а в виде лопастей с рыхлым, неправильным соединением гифов с тканью корня. Двойные чехлы (типы P и K) представлены в незначительных количествах (менее 4 % каждый).

Толщина плектенхиматических грибных чехлов достоверно увеличена (см. таблицу), достигает максимума при средней МЭД, при высокой несколько меньше, но существенно выше контроля. В зоне со сравнительно невысокой МЭД (239,2 мкР/ч) толщина псевдопаренхиматических чехлов достоверно увеличена, при средней отмечены самые толстые чехлы, при высокой различие с контролем недостоверно. Радиус корневого окончания с плектенхиматическими чехлами существенно выше контроля при сравнительно невысокой, средней и высокой МЭД; с псевдопаренхиматическими микоризами варьирует аналогично, но достоверно больше контроля только при средней МЭД. Увеличение радиуса центрального цилиндра наблюдалось только в зоне со средней МЭД у растений с плектенхиматическими чехлами. Значимый рост в толщину паренхимы плектенхиматических и псевдопаренхиматических чехлов отмечен в зоне со средней и высокой МЭД.

Доля площади грибного чехла, центрального цилиндра, паренхимы первичной коры от общей площади поперечного сечения различна. Больший процент (50,89...63,18) составляет паренхима корня, особенно у микориз с плектенхиматическими чехлами в контроле, меньше — грибной чехол, еще меньше — центральный цилиндр.

Степень развития сети Гартига в контроле составила $2,23\pm0,12$ балла; при сравнительно невысокой МЭД $-2,80\pm0,07$ балла ($t_{\rm факт}>t_{\rm табл},$ P=99,9%); при средней снизилась до $2,67\pm0,09$ балла, но $t_{\rm факт}>t_{\rm табл},$ P=99%; при высокой равна $2,5\pm0,1$ балла, однако $t_{\rm факт}< t_{\rm табл}.$


В зоне с высокой МЭД многие живые клетки паренхимы первичной коры не имеют тургора, что, видимо, связано с непосредственным воздействием радионуклидов. Кроме того, здесь встречаются корневые окончания особенного вида (рис. 2): на небольшом участке поперечного среза число слоев клеток первичной коры меньше обычного, их слагают таниновые уплощенные клетки с темноокрашенным содержимым. Известно [4], что у

хвойных растений за счет восходящего тока на границе древесины с камбиальным слоем накапливаются радионуклиды, что приводит к ослаблению нормального деления клеток камбия. Можно предположить, что жесткое излучение ингибирует рост камбия при формировании корневого окончания. Этим объясняется уменьшение числа слоев первичной коры, если рядом с данным участком имеются остатки «горячей» частицы, вызвавшей нарушение. Косвенным подтверждением такой гипотезы служит утолщение здесь грибного чехла. На образцах из 10-километровой зоны ЧАЭС в 1986—1995 гг. была показана способность грибов переводить радионуклиды в растворимую форму, что сопровождается направленным ростом мицелия к «горячим» частицам [1].

Установленное нами усиление микоризности в зонах с МЭД, равной 239,2 и 528,4 мкР/ч, связано со стимулирующим действием радиации, ослабление при МЭД 737,6 мкР/ч – с ее ингибированием (см. таблицу).

Эффект усиления или угнетения роста микориз сосны под воздействием радиоактивного загрязнения может быть использован в качестве тестсистемы при ведении мониторинга за лесными экосистемами. Дальнейшее

Рис. 2. Одностороннее ингибирование развития паренхимы первичной коры: A - 3-4 слоя живых клеток; B - 2 слоя клеток

изучение данного вопроса весьма перспективно, так как доказано различие в накоплении радионуклидов грибами в зависимости от типа питания. В частности, гриб *Armillariella mellea*, обитающий в сосновом лесу, может участвовать в трех трофических группах: сапротрофов, паразитов и микоризообразователей. Было выявлено, что по интенсивности перехода ¹³⁷Сѕ из почвы в плодовые тела трофические группы образуют следующий ряд (по убывающей): симбиотрофы > ксилофиты-сапротрофы > ксилофиты-паразиты [6]. Выявленная закономерность позволяет предположить влияние гриба на усвоение растением радионуклидов и может быть использована при создании тест-системы на основе данного критерия.

Использование микоризных грибов и микоризосодержащей земли при лесоразведении в радиоактивно загрязненных районах позволит улучшить состояние создаваемых культур сосны обыкновенной.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Блажеевская, Ю.В.* Сравнительное изучение реакций радиотропизма и фотореакций грибов, выделенных из мест повышенного радиоактивного загрязнения [Электронный ресурс] / Ю.В. Блажеевская, Т.И. Редчиц. Режим доступа: http://www.smu.psn.ru.
- 2. Веселкин, Д.В. Реакция эктомикориз хвойных на техногенное загрязнение [Текст]: автореф. дис. ... канд. биол. наук / Д.В. Веселкин. Екатеринбург, 1999. 21 с.
- 3. *Веселкин, Д.В.* Распределение тонких корней хвойных деревьев по почвенному профилю в условиях загрязнения выбросами медеплавильного производства [Текст] / Д.В. Веселкин // Экология. 2002. № 4. С. 250–253.
- 4. *Пельтек, С.Е.* Изучение популяций высших растений, находящихся в зоне влияния Семипалатинского полигона [Текст] / С.Е. Пельтек [и др.] // Цитология и генетика. -1996. -Вып. 30, № 4. С. 9-14.
- 5. Селиванов, И. А. Микосимбиотропизм как форма консортивных связей в растительном покрове Советского Союза [Текст] / И.А. Селиванов. М.: Наука, 1981.—231 с.
- 6. *Курбет, Т.В.* Особливості накопичення 137Сs різними трофічними групами опенька справжнього (*Armillariella mellea* (Fr.) Karst.) [Текст] / Т.В. Курбет, О.О. Орлов // Проблеми екології лісів і лісокористування на Поліссі України. Житомир: Волинь, 1999. Вип. 6. С. 65—74.
- 7. *Dominik, T.* Key to ectotrofic micorrizae [Text] / T. Dominik // Folia forestalia polonica. Ser. A. 1969. P. 15.

Поступила 07.05.08

I. Yu. Adamovich, E.N. Samoshkin Braynsk State Engineering Technological Academy

Mycorhizas of Scotch Pine at Different Levels of Radioactive Radiation

It is shown that low radiation doses stimulate the development of Scotch pine mycorhizas whereas high doses depress them.

Keywords: exposure dose capacity, mycotrophicity, fungoid cases of root endings.

Анатомо-морфологическое строение микоризных корневых окончаний (МЭД на поверхности почвы)

МЭД, мкР/ч	Радиус		Толщина		Процент от общей площади поперечного сечения		
	микоризы	центрального цилиндра	грибного чехла	паренхимы корня	грибного	центрального	паренхимы
	MKM				чехла	цилиндра	корня
Плектенхиматические чехлы							
239,2	148,01±6,96*	55,18±1,74	22,38±0,60***	70,44±1,77	28,04	13,89	58,07
528,4	163,47±3,85***	58,54±1,53**	24,83±0,68***	80,11±2,39**	28,22	12,85	58,93
737,6	156,60±4,41**	54,85±2,00	21,20±0,94***	80,55±2,75**	25,30	12,34	62,36
Контроль	136,42±3,69	51,18±1,77	16,37±0,71	68,87±2,10	22,69	14,12	63,18
Псевдопаренхиматические чехлы							
239,2	156,33±4,79	54,37±2,09	32,18±1,28***	69,77±2,55	36,96	12,15	50,89
528,4	184,62±10,12*	65,61±3,86	34,18±2,67*	84,84±4,86*	33,52	12,70	53,77
737,6	171,15±4,62	58,74±2,15	27,72±1,21	84,68±3,45*	29,79	11,82	58,39
Контроль	141,29±13,05	51,57±5,66	25,02±1,14	64,69±7,07	32,86	13,27	53,86

^{*} $t_{\text{факт}} > t_{\text{табл}}, P = 95 \%, p < 0.05;$ ** $t_{\text{факт}} > t_{\text{табл}}, P = 99 \%, p < 0.01;$ *** $t_{\text{факт}} > t_{\text{табл}}, P = 99.9 \%, p < 0.001.$