Анализ кривых, приведенных на рис. 3 (при постоянном значении виброускорения 125 м/c^2), показал снижение прочности волокнистой структуры с ростом степени разработанности волокон; при этом толстые гидратные слои препятствуют активному физико-химическому взаимодействию между волокнами [4].

Бумажную массу из целлюлозных волокон сульфатной небеленой целлюлозы концентрацией 2,4 % и степенью помола 18 °ШР подвергали виброактивации при значениях виброускорения 40, 90 и 130 м/с². Увеличение виброускорения обеспечивает повышенное разрушающее воздействие на структуру бумажной массы при фиксированной частоте

виброактивации.

Итак, виброактивация бумажной массы способствует разрушению волокнистой структуры. При одних и тех же режимах виброактивации с понижением концентрации волокон и увеличением степени помола предельное напряжение сдвига бумажной массы уменьшается. Разрушающее воздействие виброускорения на волокнистую структуру бумажной массы приводит к понижению ее прочности.

ЛИТЕРАТУРА

[1]. Александров А. В. Гидродинамика процессов отлива и формования бумаги.—Хабаровск: Хабар. политехн. ин-т, 1982.—С, 93. [2]. Вейнов К. А., Изыксон Б. М., Сурнин Б. М. Приборы и методы для определения реологических характеристик волокнистых суспензий // Новое в технологии бумаги: Сб. тр. ЦНИИБа.— М., 1973.— Вып. 8. [3]. Кугушев И. Д. Теория процессов отлива и обезвоживания бумажной массы.— М.: Лесн. пром-сть, 1967. [4]. Терентьев О. А. Гидродинамика волокнистых суспензий в целлюлозно-бумажном производстве.— М.: Лесн. пром-сть, 1980.

Поступила 21 ноября 1985 г.

УДК 630*813

МЕТОД ОЦЕНКИ МЕХАНИЧЕСКИХ СВОЙСТВ ВОЛОКНИСТЫХ ПОЛУФАБРИКАТОВ ПО ИХ СТРУКТУРНО-ФИЗИЧЕСКИМ ПАРАМЕТРАМ

В. Н. НЕПЕИН, И. А. ПЛОТНИКОВ, В. С. СИМОНОВ, Р. Ф. ВАЛЕЕВ

Пермский филиал ВНИИБ ВНПОбумпром

Известно, что современные методы оценки пригодности волокнистых полуфабрикатов в производстве бумаги и картона заключаются в периодическом определении механических свойств (сопротивление разрыву, продавливанию и излому) отливок, изготовленных из данных полуфабрикатов.

Затраты времени на определение механических свойств того или иного полуфабриката при полном соблюдении требований соответствующих стандартов составляют от 2 до 6 ч [1, 2, 4]. Информация, полученная при этом, с одной стороны, не может быть использована для оперативного вмешательства в процесс производства полуфабриката; с другой стороны, данные о механических свойствах чистых волокнистых полуфабрикатов еще не позволяют оценить, например, те же механические свойства бумаги и картона, в состав которых входят эти полуфабрикаты.

Нами [6] и другими авторами [7—9] давно предложено использовать для оценки бумагообразующих свойств волокнистых полуфабрикатов не стандартные механические свойства, а структурно-физические параметры, которые являются фундаментальными и чувствительными характеристиками волокнистых материалов.

Практическая реализация данного подхода становится возможной в связи с разработкой прибора ОСФП и методов, позволяющих быстрои достаточно точно получать информацию о структурно-физических параметрах волокнистых полуфабрикатов [5]. Прибор ОСФП имеет на выходе стандартные электрические сигналы и может использоваться в составе информационно-вычислительных комплексов, обеспечивающих измерение и расчет структурно-физических параметров в течение 5 мин.

Для того чтобы практически показать принципиальную возможность использования структурно-физических параметров вместо стандартных механических свойств волокнистых полуфабрикатов, необходимо экспериментально установить наличие корреляционной связи между механическими и структурно-физическими параметрами для широкого круга волокнистых полуфабрикатов. Эта цель и была поставлена в настоящей работе.

Ранее [6] нами опубликованы зависимости, связывающие сопротивление разрыву, продавливанию, раздиранию и излому волокнистых по-

луфабрикатов с их структурно-физическими параметрами.

Так, например, для разрывной длины T, м, и сопротивления продавливанию Q, Н/м2, эти зависимости имеют соответственно следующий вид:

$$\frac{1}{T} = \frac{1}{Z} + \frac{26,16 \cdot 10^{4} F_{B}}{Bill(RBA)}; \tag{1}$$

$$Q = k_1 \frac{B^2 \Pi^2 L^2 Z^2 (RBA)^2 [B\Pi L (RBA) + 26,16 \cdot 10^4 / F_B]}{\left[\left(1 + k_2^2 \right) B^2 \Pi^2 L^2 (RBA)^2 + 52,39 \cdot 10^4 k_2^2 BI L \times \right]},$$

$$\times F_B Z (RBA) + 684,35 \cdot 10^8 Z^2 F_B^2 \right]^{1.5},$$
(2)

где

Z — нулевая разрывная длина, м; $F_{\rm B},\ \Pi,\ L$ — соответственно средняя площадь поперечного сечения, м², периметр, м, длина волокна, м;

B — удельная прочность межволоконных связей на сдвиг, H/m^2 ; (RBA) — относительная связанная поверхность;

 k_1 — масштабный коэффициент;

 k_2 — коэффициент, зависящий от вида полуфабриката.

Коэффициент k_2 изменяется от 0,23 до 2,36; находили его путем математической обработки диаграммы усилие — деформация при растяжении образца полуфабриката на приборе ОСФП одновременно с определением структурно-физических параметров.

Зависимости (1) и (2) экспериментально проверяли на лабораторных отливках, приготовленных из следующих волокнистых полуфабри-

катов:

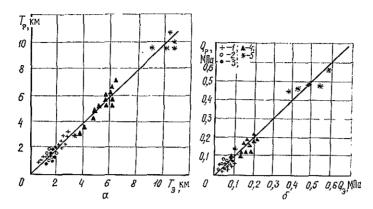
дефибрерная древесная масса (ДДМ) Пермского ЦБК и ее четыре фракции (включая «мелочь»), выделенные на аппарате ФДМ;

рафинерная древесная масса (РДМ) Сыктывкарского ЛПК;

химическая древесная масса (ХДМ) Сясьского ЦБК;

сульфитная беленая целлюлоза (СФИБ) Камского ЦБК различной степени помола в диапазоне 14...80 °ШР;

сульфатная небеленая целлюлоза (СФАН) Братского ЛПК различной степени помола в диапазоне 14...90 °ШР,


Всего было изготовлено более 40 образцов, для каждого из которых по десяти параллельным измерениям определены разрывная длина и сопротивление продавливанию, а также структурно-физические параметры, входящие в зависимости (1) и (2). Величины Z, B, (RBA) измеряли на приборе ОСФП. Среднюю длину волокна определяли путем усреднения результата измерения тысячи единичных волокон при 15кратном увеличении на аппарате «Микрофот». Величина отношения

 $F_{\rm B}/I7$ принята постоянной и равной $(3.2\pm0.2)\cdot10^{-6}$ м, согласно известным в литературе [3] и полученным нами экспериментальным данным.

Определенные таким образом структурно-физические параметры и механические свойства исследованных волокнистых полуфабрикатов приведены в таблице.

Шифр полу- фабрикатов	Структурно-физические параметры полуфабрикатов				Стандартные характе- ристики прочности	
	<i>RBA</i> , o. ед.	В, ГПА	L, mm	Ζ, м	Т _э , м	Q _э , МПА
ДДМ » » » » »	0,81 0,92 0,89 0,87 0,74 0,74 0,86	13 19 7 11 9 12 9,0	0,81 0,65 0,91 0,95 0,97 0,85 0,55	15 000 15 000 15 000 15 000 15 000 15 000 15 800	2 950 2 984 2 102 2 737 2 465 2 288 2 818	0,076 0,082 0,041 0,062 0,045 0,057 0,065
I фракция II » III » IV »	0,63 0,75 0,83 0,88	1,0 1,6 2,4 22	1,72 0,93 0,58 0,20	16 600 15 800 15 800 15 800	1 253 1 431 1 591 2 373	0,018 0,020 0,018 0,062
РДМ » » . » »	0,20 0,10 0,15 0,25 0,19	3,4 5,9 7,1 6,0 7,9	1,00 1,19 1,15 1,08 1,04	16 400 16 400 16 400 16 400 16 400	1 333 1 400 1 733 1 760 1 724	0,012 0,012 0,030 0,046 0,034
ХДМ	0,14 0,29 0,15 0,13 0,21 0,16	6,4 3,2 8,4 15 9,9 12	1,58 1,62 1,25 1,19 1,02 0,98	17 200 17 200 17 200 17 200 17 200 17 200	1 396 1 164 1 373 1 431 1 676 1 662	0,032 0,022 0,032 0,052 0,057 0,57
. СФИБ » » » »	0,61 0,79 0,84 0,88 0,89	6,6 16,7 26,7 50,3 36,6	1,57 1,37 1,22 1,02 0,98	16 000 16 000 16 000 16 000 16 000	3 822 5 422 5 867 6 222 6 044	0,108 0,158 0,178 0,179 0,170
» » » » »	0,88 0,92 0,60 0,78 0,87 0,83 0,91 0,92	34,6 25,6 6,2 11 15 17 26 25	0,85 0,75 1,57 1,37 1,28 1,22 1,02 0,99	16 000 16 000 16 000 16 000 16 000 16 000 16 000	5 778 5 956 3 372 4 525 4 907 4 934 5 784 5 908	0,165 0,131 0,052 0,091 0,122 0,125 0,135 0,160
СФАН * * * * *	0,52 0,78 0,95 0,78 0,92 0,91	5,9 34 34 66 77 36	1,49 1,37 1,35 1,26 1,16 1,08	16 500 16 500 16 500 16 500 16 500 16 500	3 185 9 123 9 931 10 629 10 543 10 766	0,09 0,42 0,56 0,61 0,49 0,37

С использованием экспериментальных данных, приведенных в таблице, и уравнений (1), (2) получены расчетные значения разрывной длины $T_{\rm p}$ и сопротивления продавливанию $Q_{\rm p}$. Графическая интерпретация взаимосвязи между расчетными и экспериментальными значениями прочности представлена на рис. a, b. Коэффициенты корреляции зависимостей $T_{\rm p}-T_{\rm p}$ и $Q_{\rm p}-Q_{\rm p}$ находились соответственно в пределах 0,94...0,98 и 0,85...0,99 в зависимости от вида полуфабриката. Относительная погрешность расчета механических свойств по структурно-физическим параметрам для отдельных видов полуфабрикатов колебалась от 10,3 до 21,4 % по сопротивлению продавливанию и от 5,6 до 15,9 %

Соотношение между экспериментально измеренными и расчетными значениями механических свойств волокнистых полуфабрикатов: a — разрывная длина; δ — сопротивление продавливанию; l — дефибрерная древесная масса; l — рафинерная древесная масса; l — сульфитная беленая целлюлоза; l — сульфатная небеленая целлюлоза; l — сульфатная небеленая целлюлоза

по разрывной длине. По всему массиву экспериментальных данных относительная погрешность расчета не превышала 15 %, что достаточно для практического применения.

В настоящее время наиболее трудноопределимый параметр в промышленных условиях — средняя длина волокна. Однако в рамках одного технологического режима производства конкретного волокнистого полуфабриката длина волокна меняется незначительно; ее достаточно определить один раз и в дальнейшем считать постоянной.

Проведенные экспериментальные исследования подтверждают целесообразность использования структурно-физических параметров волокнистых полуфабрикатов для оценки их бумагообразующей способности вместо стандартных показателей разрывной длины и сопротивления продавливанию. При этом затраты времени на подготовку, испытание и обработку результатов измерения сокращаются в несколько раз. И, наконец, зависимости (1), (2) обладают диагностирующим характером, позволяя установить внутренние причины изменения прочности того или иного полуфабриката.

ЛИТЕРАТУРА

[1]. ГОСТ 14363.4—79 (СТ СЭВ 444—77). Целлюлоза. Подготовка проб к физикомеханическим испытаниям.— Взамен ГОСТ 1436.34—70; Введ. 01.01.80 до 01.01.90.—М.: Изд-во стандартов, 1979.— 5 с. [2]. ГОСТ 16296—79. Масса древесная. Метод подготовжи проб к физико-механическим испытаниям.—Взамен ГОСТ 16296—70; Введ 01.01.81 до 01.01.91.— М.: Изд-во стандартов, 1979.— 4 с. [3]. Непеин В. Н. Оценка прочностных свойств бумаги с учетом ее структурно-физических характеристик: Дис...канд. техн. наук.— Л.: ЛТА, 1975.—190 с. [4]. Овдейчук В. П. Лабораторный практикум по технологическому контролю целлюлозно-бумажного производства.— М.: Лесн. пром-сть, 1979.— С. 36—41. [5]. Симонов В. С. Разработка метода определения основных структурно-физических параметров бумаги на основе исследования ее механического поведения при одноосном растяжении: Дис...канд. техн. наук.— Л.: ЛТА, 1984.— 189 с. [6]. Теоретические предпосылки прогнозирования бумагообразующих свойств волокнистых полуфабрикатов / В. Н. Непеин, В. С. Симонов, В. П. Бутырин, Н. А. Плотников // Исследования в области технологии бумаги и картона: Сб. тр. ВНИИБ.— Л., 1982.— С. 54—58. [7]. Forgacs O. L. The characterization of mecanical pulps // Pulp and paper magazine of Canada.—1963.— V. 64.— N. C., Т.— Р. 89—118. [8]. Раде D. М. А. theory for the tensile strength of paper // TAPPI.—1969.— V. 52.— N. 4.— P. 674—681. [9]. V and en Akker D. A. Structure and tensile characteristics of paper // TAPPI.— V. 53.— N. 3.— Р. 388—399.