ХИМИЧЕСКАЯ ПЕРЕРАБОТКА ДРЕВЕСИНЫ

УДК 54:674.815-41

ИСПОЛЬЗОВАНИЕ ЛИГНОСУЛЬФОНАТОВ В ПРОИЗВОДСТВЕ ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ

А. А. ЭЛЬБЕРТ, Л. П. КОВРИЖНЫХ, П. А. ХОТИЛОВИЧ

Ленинградская лесотехническая академия

Известно, что при получении древесностружечных плит (ДСП) в качестве связующего вещества применяют карбамидоформальдегидные смолы, доля которых в себестоимости плит составляет 30...45 %. Указанные смолы выделяют формальдегид как в процессе прессования плит, так и при их эксплуатации. В условиях нарастающего дефицита смол и их вредного воздействия в нашей стране и за рубежом проводят изыскание веществ, которые могли бы частично или полностью заменять эти смолы [9, 14].

Перспективное направление в решении этой проблемы — использование в качестве компонента связующего лигносульфонатов — многотоннажного побочного продукта сульфит-целлюлозного производства [12, 14, 17, 18], не находящего полного сбыта.

В настоящее время в производстве ДСП товарные лигносульфонаты используют ограниченно (5...8 % от массы смолы), так как при большем количестве ухудшаются показатели физико-механических свойств плит, особенно набухание в воде [5, 14].

На кафедре древесных пластиков и плит ЛТА разработаны способа модификации лигносульфонатов, что позволяет осуществить

замену 20...30 % карбамидоформальдегидной смолы.

Один из способов модификации технических лигносульфонатов это их обработка персульфатом аммония (NH₄)₂S₂O₈ перед совмещением с карбамидной смолой [2-4]. Персульфат аммония - эффективный отвердитель карбамидных смол [14] и окислитель лигнина [8], поэтому его можно применять для повышения реакционной способности

лигносульфонатов при совмещении с карбамидной смолой.

Обработка лигносульфонатов (ЛС) персульфатом аммония приводит к резкому увеличению количества общих кислых групп. Одновременно с реакциями окисления проходит процесс десульфирования, особенно при температуре 160 °C (табл. 1). В окисленных лигносульфонатах увеличивается количество гидроксильных групп, главным образом, за счет фенольных ОН-групп. Содержание алифатических гидроксильных групп снижается пропорционально увеличению количества боксильных групп, т. е. в мягких условиях окисления происходит фрагментация лигносульфонового комплекса и окислению подвергаются в первую очередь заместители в пропановых звеньях структурных единиц лигнина. Обработка при 160 °С привела к резкому снижению содержания фенольных ОН-групп в лигносульфонатах (табл. 1) за счет радикальной полимеризации окисленных фрагментов [10, 15].

Данные спектрального и термогравиметрического анализа показывают протекание реакций, происходящих в лигносульфонате под дей-

ствием персульфата аммония в интервале 107...175 °C.

При изучении свойств лигносульфонатов с персульфатом аммония установлено, что при термообработке значительно увеличивается реак-

Таблица 1

_	Содержание функциональных групп, %, в лигносульфонате					
Тип функциональных	исхо	дном	обработанном с 6 % персульфата аммония			
групп	без термо- обра- ботки	после термо- обработки	без термо- обра- ботки	после термо- обработки		
Гидроксильные: общие фенольные алифатические Карбоксильные Сульфогруппы	11,98 9,98 2,00 0,78 2,13	11,77 10,92 0,85 1,13 2,03	14,70 13,31 1,39 1,46 1,85	9,20 8,48 0,72 2,10 0,92		

Примечание. Термообработку проводили при температуре $160~^{\circ}\text{C}$ в течение $5~^{\circ}\text{MH}$.

ционная способность лигносульфонового комплекса и создаются условия активации лигносульфонатов для последующего химического взаимодействия с карбамидоформальдегидной смолой при получении ДСП. Время желатинизации композиции совмещенного связующего с 30 % лигносульфоната и персульфатом аммония при 100 °C не увеличивается

Таблица 2

Содер- жание ЛС в связую- щем	Количество водорастворимых веществ, %, в отвержденном связующем при продолжительности термообработки, мин					
КФ-МТ, %	2	5	10			
0	23,3	18,0	19,6 7,0			
20	25,0 16,1	19,2	$\frac{18,1}{10,4}$			
30	$\frac{28,1}{16,0}$	$\frac{19.5}{12.5}$	19,3 10,5			
50	$\frac{39,4}{26,7}$	36,0 25,3	$\frac{35,3}{22,8}$			
70	86,1 45,7	81,4	80,0			

Примечание. В числителе — данные при 100, в знаменателе — 160 °C. Для связующего без добавок ЛС — отвердитель NH_4Cl , для остальных — $(NH_4)_2S_2O_8$.

по сравнению со временем желатиконтрольных образцов низации смолы с хлоридом аммония. В то же время введение даже небольших количеств технических лигносульфонатов в смолу с хлоридом аммония значительно замедляет процесс отверждения связующего. В случае замещения 20...30 % карбамидной смолы лигносульфонатами с персульфатом аммония степень отверждения совмещенного связующего не снижается по сравнению с контрольной смолой, что подтверждается содержанием водорастворимых веществ (табл. 2).

Определение порядка реакции как по метилольным группам, так и по формальдегиду показало, что после одной минуты термообработки их изменение происходит по второму порядку [7].

Сравнение констант скорости (см. табл. 3) показало, что приме-

нение хлористого аммония в качестве катализатора отверждения связующего, содержащего 70 % карбамидной смолы и 30 % лигносульфоната, неэффективно. Скорость реакции по метилольным группам и свободному формальдегиду в этом случае уменьшается в два раза по сравнению с карбамидоформальдегидной смолой. В то же время введение персульфата аммония в состав совмещенного связующего не только не снижает скорость реакции по метилольным группам, но более чем в два раза увеличивает ее по свободному формальдегиду. Тем самым создается возможность для связывания формальдегида, выделяющегося при отверждении карбамидоформальдегидной смолы, и снижения токсичности ДСП [15, 19, 20].

			Таблица 3
Константы	скорости	процесса	отвелжления

Состав связующего		Константа скорости К·10², л/моль, рассчитанная по изменению		
·	-СН₂ОН	CH₂O		
100 % KΦ-MT + 2 % NH ₄ Cl 70 % KΦ-MT + 30 % JIC + + 2 % (NH ₄) ₂ S ₂ O ₈	0,16	2,2		
+2% (NH4)2S2O8	0,12	8,3		

Промышленная партия ДСП на основе разработанного связующего с различным содержанием лигносульфонатов была выпущена на заводе ДСП Пюссиского КДП [1]. Массовый расход связующего для пылевого слоя составил $15,4\dots16,0$; промежуточного — $15,5\dots16,5$; внутреннего слоя — $14,5\dots15,5$ %. Породный состав сырыя: древесина лиственных пород — 85%, хвойных пород — 15%. Условия горячего прессования: температура — $158\dots165$ °C, максимальное удельное давление — 2,2 МПа, продолжительность — 0,22 м/мм. Толщина плит — 16 мм.

В табл. 4 представлены данные физико-химических свойств связующего, в табл. 5 — данные физико-химических свойств промышленной партии ДСП с совмещенным связующим.

Таблица 4

	Содержание лигносульфонатов в связующем, %					
Показатель связующего	Пыле- вой	Проме-	Внутренний слой			
	слой — 0 (100 % КФ-МТ)	жуточ- ный слой — 20	20	30		
Концентрация (по рефрактометру), % рН Вязкость (ВЗ-4), с	56,2 6,15 19,8	61,3 5,20 40,0	62,5 5,14 50,0	60,0 4,60 40,0		
Время желатинизации: при 100°C, с при 20°C, ч	_	86 12	72 15	68 15		

Таблица 5

Содержание лигно- сульфонатов в связующем, %			Предел прочности, МПа				
Проме- жуточ- ный слой	Внут- ренний слой	Плот- ность, кг/м³	при ста- тическом изгибе	при растя- жении перпен- дику- лярно поверх- ности	Набу- хание за 24 ч, %	Водо- погло- щение, %	
	Лигн	осульфона	ты на Са	-Nа основ	ании		
15 20 20 20	10 15 20 30	729 706 719 710	21,6 21,0 23,3 23,8	0,65 0,59 0,61 0,64	14,3 15,3 13,3 12,4	65 68 68 63	
Лигносульфонаты на аммониевом основании							
15	20	759	23,0	0,60	13,8	52	
	ная плита: + NH₄CI	730	21,1	0,56	15,3	69	

При использовании лигносульфонатов для замещения 20...30 % карбамидной смолы получены более прочные и водостойкие плиты. Исследование токсичности изготовленных плит показало снижение уровня выделения формальдегида на 70 %.

По данным Ростовского медицинского института, плиты с 20 % ЛС и персульфатом аммония выделяют формальдегид в количестве 0.028 ± 0.002 мг/м³ воздуха, контрольные плиты с хлоридом аммония — 0.047 ± 0.004 мг/м³.

Второй способ модификации лигносульфонатов заключается во введении катионов более высокой валентности, например, ионов алюминия вместо катионов варочного основания [1].

В табл. 6 представлены сравнительные характеристики ЛС натрия, алюминия (катионозамещение) и смеси ЛС натрия и алюминия, полученной добавлением раствора сульфата алюминия к техническим лигносульфонатам. Из данных табл. 6 видно, что в результате замены в полимолекуле ЛС катиона на алюминий увеличивается относительная динамическая вязкость, уменьшаются скорость электрофореза, поверхностное натяжение и содержание минеральных веществ. Судя по данным гель-хроматографии, полученным при использовании УФ-детектора, после замещения на катион алюминия наблюдается некоторое увеличение молекулярных масс [6].

Таблица 6 Коллоидные свойства модифицированных 20 %-х растворов лигносульфонатов

3								
Препарат	Относи- тельная динами- ческая вязкость	Скорость электро- фореза, мкм/с	Поверх- ностное натяже- ние σ• 10³, Н/м	рН				
Исходные и модифицированные ЛС								
ЛС-Na ⁺ .	1,5	5,0	57,0	4,0				
ЛС-Na ⁺ + Al ³⁺	1,6	4,8	56,3	2,2				
ЛС-A1 ³⁺	2,2	4,5	50,0	1,8				
Термообработанные ЛС								
ЛС-Na ⁺	1,6	4,4	61,2	4,1				
$JC-Na^{+}+Al^{3+}$	2,5	4,1	60,7	2,5				
ЛС-Al ³⁺	2,6	3,4	57,0	2,1				

С увеличением количества ионов алюминия возрастает также оптическая плотность растворов. Данными ИК-спектроскопии для лигносульфонатов алюминия выявлено образование дополнительных межмолекулярных связей [13].

В процессе изготовления древесных плит связующее подвергается тепловому воздействию, поэтому мы определяли коллоидные свойства исходных и модифицированных лигносульфонатов (МЛС) после термообработки (190°С, 15 мин). Из термообработанных ЛС готовили 20%-е растворы. В результате термообработки возросла вязкость, уменьшились поверхностное натяжение и скорость электрофореза. Наиболее значительное изменение этих величин наблюдается у ЛС алюминия (см. табл. 6).

После термообработки лигносульфоната алюминия в водорастворимой его части, подвергнутой гель-фильтрации, доля высокомолекулярных фракций уменьшается вследствие того, что часть высокомолекулярных лигносульфонатов в результате процессов структурирования становится нерастворимой в воде.

Значительное воздействие на процесс структурирования ЛС алюминия оказывают продолжительность и температура термообработки, с возрастанием которых при одинаковом содержании сухих исходных ЛС (45 %) количество нерастворимых в воде веществ увеличивается. После 15 мин термообработки при 150 °C процесс структурирования еще не заканчивается, а при 190°C процесс близок к завершению.

Исследовали влияние рН модифицированных ЛС на их способность образовывать при термообработке нерастворимые в воде соединения.

Значения рН среды варьировали в диапазоне 1,6 ... 9,0, добавляя в раствор лигносульфонатов алюминия, содержащий 45 % сухих веществ, раствор аммиака и серной кислоты. Растворы лигносульфонатов подсушивали до воздушно-сухого состояния на водяной бане. Термообработку проводили при 190 °C в течение 15 мин.

Количество нерастворимых веществ после термообработки как у ЛС алюминия-натрия, так и у ЛС алюминия в значительной степени зависит от их рН. Наибольшее количество нерастворимых веществ образуется у обоих лигносульфонатов при рН 1,6 . . . 2,5, если содержание алюминия в них составляет менее 2,0 % к органическим веществам. При повышении значения рН растворимость ЛС возрастает и в нейтральной среде достигает 100 %. При содержании алюминия 6,0 % к массе органических веществ способность к образованию нерастворимых в воде веществ увеличивается, особенно заметно при pH $4\dots 7$, когда их количество составляет 57,0 % (pH 4) и 63 % (pH 7).

Модификацию лигносульфонатов, содержащих катионы кальция и кальций-натрия для использования совместно с карбамидоформальдегидной смолой, осуществляли добавлением к ним сульфата алюминия. После завершения процесса катионозамещения модифицированные лигносульфонаты отделяли от образовавшегося осадка сульфата кальция и при различном соотношении с карбамидоформальдегидной смолой готовили составы связующего [16].

Показано, что процесс отверждения сопровождается образованием структуры пространственного строения с уменьшением содержания метилольных групп. Характер изменения зависит от температуры и соотношения карбамидоформальдегидной смолы и лигносульфонатов алюминия. Наименьшее количество метилольных групп обнаружено в композиции, массовое содержание лигносульфонатов алюминия в которой составляло 30 ч. Прочность клеевых соединений возрастает с повышением температуры и продолжительности отверждения и согласуется с результатами исследований процесса отверждения связующего. стабилизации связующего, а также снижения содержания в нем формальдегида разработаны акцептирующие добавки — моно- и диаммонийфосфаты.

По результатам проведенных исследований разработана технология модификации лигносульфонатов. На опытно-промышленной новке Сясьского ЦБК были выпущены первые партии модифицированных лигносульфонатов со следующими свойствами: содержание сухих веществ — 44.0 %, минеральных — 8.1 %, органических — 35.9 %, pH 3.2. Условная вязкость по B3-4-36 с. Количество PB-2,26 %.

Выпуск опытно-промышленных партий ДСП на основе карбамидоформальдегидной смолы и модифицированных лигносульфонатов проводили на ряде предприятий отрасли. Были получены положительные

результаты.

В 1987 г. на существующих площадях завода ДСП Надворнянского ЛК смонтировано оборудование, необходимое для модификации технических лигносульфонатов Сясьского ЦБК. После серии опытных выработок технология модификации лигносульфонатов и производства ДСП была принята к внедрению [11].

Свойства связующего для внутреннего и наружных слоев представ-

лены в табл. 7.

. Таблица 7

	Соотношение компонентов, %								войства	связую	щего	
	Hap	ужные	слои	Внутренний слой		Наружные слои		Внутренний слой				
Но- мер вари- анта	Смо- ла	млс	Хло- рид ам- мо- ния	Смо- ла	млс	Хло- рид ам- мо- ния	рH	Вяз- кость, с	Вре- мя жела- тини- за- ции, с	Нq	Вяз- кость, с	Вре- мя жела- тини- за- ции, с
I II III K	80 100 85 100	20 15	0,5 0,5 — 0,5	100 85 85 100	15 15 15	2 1 1 2	5,2 6,8 5,6 6,8	27 21 37 22	114 138 120 138	6,8 5,6 5,6 6,8	29 38 35 29	73 74 74 74 73

Связующее наносили на древесные частицы по касательной к потоку стружки в смесителях с быстроходными лопастными валами. Влажность осмоленной стружки для наружных слоев поддерживали на уровне 12,0...13,0 %, для внутреннего слоя 7,0...8,0 %. Подпрессовку стружечного ковра осуществляли в прессе непрерывного действия гусеничного типа, горячее прессование — в многоэтажном прессе периодического действия. Условия прессования: температура — 175...180 °С, продолжительность — 0,28 мин/мм. После охлаждения ДСП подавали на форматную обрезку и шлифование.

В табл. 8 представлены результаты испытаний ДСП, полученных на Надворнянском ЛК с использованием в качестве связующего карбамидоформальлегидной смолы марки КФ-МТ (БП) и МЛС.

Таблица 8

		Предел п МПа,			
Но- мер вари- анта	Плот- ность, кг/м3	статиче- ском изгибе	растя- жении перпен- дику- лярно пласти	Разбу- хание, %	
I II III K	753 717 742 733	19,9 20,6 20,3 19,7	0,56 0,55 0,60 0,53	18,6 18,3 18,8 18,7	

Как видно из табл. 8, введение в связующее МЛС не снижает показателей физико-механических свойств, а для отдельных образцов плит повышает при уменьшенном на $15...20\,$ % содержании смолы. Потребное количество лигносульфонатов в год для завода мощностью $120\,$ тыс. $120\,$ тыс.

В настоящее время на кафедре в основном завершена работа по модификации лигносульфонатов на натриевом основании путем использования системы, включающей катионы высокой валентности и акцепторы формальдегида, что позволяет наряду с заменой 20...30 % карбамидоформальдегидной смолы значительно снизить токсичность ДСП.

Расчеты показали, что потенциальная потребность в лигносульфонатах для использования в качестве компонента связующего в производстве ДСП составляет около 300 тыс. т в год. Тем самым, помимо обеспечения производства древесных плит заменителями синтетических смол, в определенной степени решаются экологические проблемы целлюлозно-бумажной промышленности.

ЛИТЕРАТУРА

[1]. А. с. 939497 СССР, МКИ СО8 L 97/02. Прессмасса для изготовления древесных \ плит / П. А. Хотилович, А. А. Эльберт, С. А. Сапотницкий и др.— № 2957497/23—05; Заявл. 23.07.80; Опубл. 23.07.80 // Открытия. Изобрет.— 1980.— № 24. [2]. А. с. 1219614 СССР, 4СО 8161/24. Композиция для древесностружечных плит / А. А. Эльберт, Л. П. Коврижных, В. В. Васильев и др.— № 3664100/23—25; Заявл. 17.11.83; Опубл. 23.03.86 // Открытия. Изобрет.— 1986.— № 11. [3]. А. с. 1237433 СССР, В27 N 3/02. Способ получения древесноструженных плит / А. А. Эльберт. П. И. Коврижных плит / В. А. Эльберт. П. И. Коврижных плит / В. В. Веректоричения древесноструженных плит / А. А. Эльберт. П. И. Коврижных плит / В. В. Веректоричения древесноструженных плит / В. В. Эльберт. 1237433 СССР, ИЗ/О2. СПОСОО ПОЛУЧЕНИЯ ДРЕВЕСНОСТРУЖЕЧНЫХ ПЛИТ / А. А. ЭЛЬберт, Л. П. Коврижных, Б. В. Рошмаков и др.— № 3759738; Заявл. 26.06.84; Опубл.
15.06.86 // Открытия. Изобрет.— 1986.— № 22. [4]. А. с 1399315 СССР, 4СО 81 61/24.
Полимерное связующее для древесностружечных плит / А. А. Эльберт, Л. П. Коврижных, А. П. Штембах и др.— № 3967494; Заявл. 12.08.85; Опубл. 30.05.88 // Открытия. Изобрет.— 1988.— № 20. [5]. Доронин Ю. Г., Кондратьев В. П.,
Герасимова В. П. Снижение расхода карбамидных связующих в производстве
древесностружечных плит // Деревообраб. пром-сть,— 1983.— № 3.— С. 11—13. [6]. Изучение свойств модифицированных лигносульфонатов как связующего для древесных плит / А. А. Эльберт, О. В. Дорохова, П. А. Хотилович и др. // Химия древесины.— 1985.— № 5.— С. 61—65. [7]. Коврижных Л. П. Модификация синтетических смол для древесностружечных плит: Обзор. информ.— М.: ВНИПИЭИлеспром // Плиты и фанера.— 1987.— № 6.— 36 с. [8]. Лигнины / Под ред. К. В. Сарканена, К. Х. Людвига: Пер. с англ.— Л.: Лесн. пром-сть, 1975.— 632 с. [9]. Мело н и Т. Современное производство древесностружечных и древесноволокнистых плит: Пер. с англ.— М.: Лесн. пром-сть, 1982.— 416 с. [10]. Повышение реакционной плит. Пер. С англ.— М... Лесн. пром-сть, 1902.— Что с. [10]. Порышение реакционном способности технических лигносульфонатов в карбамидоформальдегидном связующем для древесностружечных плит / А. А. Эльберт, Л. П. Коврижных, А. П. Штембах и др. // Технология древесных плит и пластиков: Межвуз. сб. науч. тр.— Свердловск: УЛТИ, 1988.— С. 39—45. [11]. Промышленное использование модифицированных лигносульфонатов в производстве древесностружечных плит / А. А. Эльберт, П. А. Хотилович, В. С. Чиркова и др. // Деревообраб. пром-сть.— 1989.— № 2.— С. 23—25. [12]. Са п о т н и ц к и й С. А. Использование сульфитных щелоков.— М.: Лесн. пром-сть.— 1981.— 294 с. [13]. Структурные особенности, питносульфоната, апоминия // ть, 1981.— 224 с. [13]. Структурные особенности лигносульфоната алюминия / С. А. Сапотницкий, Л. И. Крюкова, Л. М. Митрофанова, Л. Г. Солодухина // Химия древесины.— 1988.— № 3.— С. 80—82. [14]. Эльберт А. А. Химическая технология древесностружечных плит.— М.: Лесн. пром-сть, 1984.— 224 с. [15]. Эльберт А. А., Коврижных Л. П., Козловский И. Ф. Влияние персульфата аммония на отверждение карбамидных смол, совмещенных с лигносульфонатами // Химия древесины.— 1988.— № 1.— С. 90—94. [16]. Эльберт А. А., Хотилович П. А., Сапотницкий С. А. Связующее на основе карбамидоформальдегидной смолы и Сапотницкии С. А. Связующее на основе кароамидоформальдегидной смолы и лигносульфонатов для древесностружечных плит // Деревообраб. пром-сть.— 1984.— № 4.— С. 6—8. [17]. Ayla C., Nimz H. Die Verwendung von Ablaugen-lignin bei der Herstellung von Holzwerkstoffen // Holz als Roh — und Werkstoff.— 1984.— Nil.— S. 415—419. [18]. Bera S. C., Pillai C. K., Satyanarayana K. G. Lignin in spent liquor as a source of polymeric resin adhesive // Journal of Scintific and Endustrial Research.—1985.— N 11.— p. 599—606. [19]. Nimz H. H., Hitze G. The application of spent liquor as an adhesive for particleboards // Cellulose Chem. Technolog.—1980.— N 3.— P. 371—382. [20]. Wotten A. L., Sellers T., Paridah Md Tahir. Reaction of formaldehyde with lignin // Forest Products Journal.— 1988.— N 6.— P. 45—46 1988.— N 6.— P. 45—46.

Поступила 3 июля 1989 г.

УДК 676.017

ИССЛЕДОВАНИЕ СТРУКТУРЫ ДИЭЛЕКТРИЧЕСКОГО СЛОЯ ЭЛЕКТРОСТАТИЧЕСКОЙ БУМАГИ С ИСПОЛЬЗОВАНИЕМ ВЫСОКОЧАСТОТНОГО РЕЗОНАНСНОГО МЕТОДА

Б. П. ЕРЫХОВ, М. Г. КРЫМЕР, А. С. ГОЛОВКОВ, А. А. ЕВСЕЕВ, Л. А. ЩЕРБИН

ЦНИИБ

В настоящее время системы электростатической записи информации широко применяют в выводных устройствах ЭВМ, геофизической, сейсмической, медицинской аппаратуре [2]. Электростатическая запись