УДК 676. 024. 61

С.Н. Вихарев

Уральский государственный лесотехнический университет

Вихарев Сергей Николаевич родился в 1958 г., окончил в 1980 г. Уральский государственный лесотехнический институт, кандидат технических наук, доцент кафедры машин и оборудования ЦБП УГЛТУ. Имеет около 150 печатных работ в области динамики оборудования ЦБП. E-mail: cbp200558@mail.ru

КОНТАКТНОЕ ВЗАИМОДЕЙСТВИЕ НОЖЕЙ ГАРНИТУРЫ МЕЛЬНИЦ С ВОЛОКНИСТЫМ ПОЛУФАБРИКАТОМ

Рассмотрена механика контактного взаимодействия ножей гарнитуры с учетом специфических особенностей волокнистой прослойки. Получена математическая модель, связывающая параметры контакта ножей гарнитуры и волокнистой прослойки.

Ключевые слова: контактное взаимодействие, ножи, волокнистая прослойка.

В механике деформируемого твердого тела контактное взаимодействие является одним из ведущих направлений. Исследование модели контактного взаимодействия гарнитуры актуально в связи с внедрением новых материалов и технологий, предъявлением новых требований к условиям и срокам эксплуатации гарнитуры. Научный интерес к этой проблеме обусловлен многообразием процессов и явлений, протекающих при размоле в ножевых мельницах. Известно много работ Ю.Д. Алашкевича, В.Н. Гончарова, Е.Е. Савицкого, В.И. Ковалева и др., посвященных этой проблеме.

Цель работы – исследование контактного взаимодействия ножей гарнитуры с учетом специфических особенностей волокнистой прослойки.

Рассмотрим скольжение абсолютно жестких ножей по поверхности полуфабриката (рис. 1). Ножи ротора скользят относительно статора со скоростью \vec{V} . Форма рабочей поверхности контакта ножей описывается периодической функцией f(x, z). Введем неподвижную систему координат x', y', z' так, что ее начало в момент времени t = 0 будет расположено по оси ножа. Ось x'направлена вдоль вектора скорости \vec{V} , а ось y' - в глубь волокнистой прослойки. Также введем систему координат x, y, z, связанную с ротором и двигающуюся со скоростью \vec{V} .

Будем считать, что движение установившееся. В зоне контакта Ω выполняется условие

$$w(x,z) = \delta + f(x,z); \quad (x,z) \in \Omega,$$

© Вихарев С.Н., 2013

где w(x, z) – нормальные перемещения границы волокнистой прослойки вследствие ее деформирования;

δ – межножевой зазор.

Контактное давление, возникающее при перекрещивании ножей ротора и статора p(x, z) вне площадок периодического контакта (-a(z), b(z)) равно нулю:

$$p(x,z) = 0; (x,z) \notin \Omega; p(-a(z)) = p(b(z)) = 0.$$
 (1)

Нормальные перемещения и давление по координате x удовлетворяют условиям периодичности на поверхности (x, z):

$$w(x,z) = w(x+l,z); \ p(x,z) = p(x+l,z), \tag{2}$$

где *l*- шаг ножей гарнитуры.

Уравнение равновесия для каждого ножа:

$$\iint_{\Omega} p(x,z)dxdz = P, \tag{3}$$

где *Р* – нагрузка на один нож.

В качестве модели волокнистой прослойки (вязкоупругого слоя между ножами) используется модель Максвелла–Кельвина [1]. Для этой модели нормальные перемещения слоя w(x, z) связаны с давлением p(x, z) следующим соотношением [3]:

$$w(x',z',t) + T_{\varepsilon} \frac{dw(x',z',t)}{dt} = \frac{(1-v^2)h}{E_e} \Big(p(x',z',t) + T_{\sigma} \frac{dp(x',z',t)}{dt} \Big), \tag{4}$$

где T_{ε} , T_{σ} – время релаксации и последействия;

ν – коэффициент Пуассона;

*Е*_{*e*}– длительный модуль упругости.

Отношение толщины слоя к приведенному модулю h/E^* характеризует податливость слоя волокнистой прослойки, а мгновенный модуль упругости E_1 определяется соотношением $T_e E_e / T_{\sigma}$. Приведенный модуль

$$E^* = \frac{E_e}{1 - \nu^2} \ . \tag{5}$$

В системе координат (0, *x*, *y*, *z*), связанной с движением ножей $(x = x' - Vt; y = y'; z = z'; V = \omega r)$, компоненты вектора смещений u_i и тензора напряжений σ_{ij} не зависят явно от времени и являются функциями координат (x, y, z). Компоненты тензоров деформаций и напряжений в дви-

жущейся (0, *x*, *y*, *z*) и неподвижной (0, *x*', *y*', *z*') системах координат связаны между собой следующими уравнениями [2]:

$$\varepsilon_{ij}' + T_{\varepsilon} \frac{\partial \varepsilon_{ij}}{\partial t} = \varepsilon_{ij} - T_{\varepsilon} V \frac{\partial \varepsilon_{ij}}{\partial x} = \varepsilon_{ij}^{*};$$

$$\sigma_{ij}' + T_{\sigma} \frac{\partial \sigma_{ij}'}{\partial t} = \sigma_{ij} - T_{\sigma} V \frac{\partial \sigma_{ij}}{\partial x} = \sigma_{ij}^{*};$$

$$u_{i} - T_{\varepsilon} V \frac{\partial u_{i}}{\partial x} = u_{i}^{*};$$

$$p(x) - T_{\sigma} V \frac{\partial p(x)}{\partial x} = p^{*}(x).$$

(6)

Функции ε_{ij}^* , σ_{ij}^* удовлетворяют эквивалентным уравнениям совместимости деформаций.

В подвижной системе координат соотношение (4) имеет следующий вид:

$$w(x,z) - T_{\varepsilon}V\frac{dw(x,z)}{dx} = \frac{h}{E^{*}} \Big(p(x,z) - T_{\sigma}V\frac{dp(x,z)}{dx} \Big).$$
(7)

Для решения трехмерной контактной задачи воспользуемся методом полос [4]. Разобьем зону контакта ножей на 2N тонких полос, параллельных направлению скольжения. Для каждой полосы будем решать соответствующую плоскую периодическую задачу, пренебрегая при этом их взаимодействием. На рис. 2 изображены две соседние плоскости контакта и характерная полоса шириной Δz с номером *j*, находящиеся на расстоянии z_j от оси *x* (z_{max} – полуширина площадки контакта в направлении оси о*z*).

Условия периодичности в каждой полосе:

$$w_j(x, z_j) = w_j(x + l, z_j); \quad p_j(x, z_j) = p_j(x + l, z_j).$$
 (8)

Нормальные перемещения границы вязкоупругого слоя в *j*-й полосе можно определить по условию

$$w_j(x, z_j) = \delta - \frac{1}{2R} (x^2 + z_j^2); \ x \in \Omega,$$
 (9)

где **δ** – зазор.

Введем безразмерные координаты и переменные:

$$\hat{x} = \frac{x}{R}; \ \hat{z} = \frac{z}{R}; \ \hat{w} = \frac{w}{R}; \ \hat{\delta} = \frac{\delta}{R}; \ \hat{l} = \frac{l}{R}; \ \hat{p}_{j} = \frac{2p_{j}}{R} \cdot \frac{h}{E^{*}};
\hat{P} = \frac{2P}{R^{3}} \frac{h}{E^{*}}; \ \zeta = \frac{2a_{\rm H}}{T_{\sigma}V}; \ \hat{a}_{\rm H} = \frac{2a_{\rm H}}{R};$$
(10)

где $a_{\rm H}$ – характеризует приложенную нагрузку, $a_{\rm H} = \sqrt[3]{\frac{3PR}{4E^*}}$.

Уравнение (9) и производная этого уравнения по координате *х* преобразуют соотношение (7):

$$\hat{p}_{j}(\hat{x}, \hat{z}_{j}) - \frac{\hat{a}_{H}}{\zeta} \frac{d\hat{p}_{j}(\hat{x}, \hat{z}_{j})}{d\hat{x}} = 2\hat{\delta} - \hat{x}^{2} - \hat{z}_{j}^{2} + \frac{2c\hat{a}_{H}}{\zeta}\hat{x}.$$
 (11)

Рис. 2 Метод полос

Решая уравнение (11), получаем распределение давлений в *j*-й полосе зоны контакта:

$$\hat{p}_{j}(\hat{x}, \hat{z}_{j}) = \frac{\zeta}{\hat{a}_{H}} \int_{-\hat{a}_{j}}^{\hat{x}} e^{\frac{(\hat{x}-\xi)\zeta}{\hat{a}_{H}}} \left(\xi^{2} - \frac{2c\hat{a}_{H}}{\zeta}\xi - 2\hat{\delta} + \hat{z}_{j}^{2}\right) d\xi.$$
(12)

При этом одно из граничных условий на конце площадки при $x = a_j$ будет выполнено как

$$\hat{p}_j(-\hat{a}_j)=0; \ -\hat{a}_j=\hat{a}(\hat{z}_j).$$

Интегрируя выражение (12), получаем

$$\hat{p}_{j}(\hat{x},\hat{z}_{j}) = e^{\frac{(\hat{x}+\hat{a}_{j})\zeta}{\hat{a}_{H}}} (\hat{a}_{j}^{2} - c_{1}\hat{a}_{j} - c_{2j}) - \hat{x}^{2} - c_{1}\hat{x} + c_{2j},$$
(13)

где $c_1 = \frac{2\hat{a}_{\mathrm{H}}(1-c)}{\zeta}; \ c_{2j} = 2\hat{\delta} - \hat{z}_j^2 - 2\hat{a}_{\mathrm{H}}^2(1-c)/\zeta.$

В выражение для контактного давления (13) входит неизвестная граница площадки контакта $a_j = a(z_j)$. Запишем второе граничное условие (1) для давления на набегающей стороне области контакта $b_j = b(z_j)$ и соотношение (11) на ненагруженных участках $p_j(x, z_i) = 0$ при $x \in (b_j, l - a_j)$:

$$\hat{p}_{j}(\hat{b}_{j}) = e^{\frac{(b_{j}+a_{j})^{5}}{a_{H}}} (\hat{a}_{j}^{2} - c_{1}\hat{a}_{j} - c_{2j}) - \hat{b}_{j}^{2} - c_{1}\hat{b}_{j} + c_{2j} = 0;$$
(14)

$$\widehat{w}_j(\widehat{x}, \widehat{z}_i) - \frac{a_{\scriptscriptstyle H}c}{\zeta} \frac{dw_j(x, z_j)}{d\widehat{x}} = 0; \quad \widehat{x} \in (\widehat{b}_j, \widehat{l} - \widehat{a}_j).$$
(15)

Решением уравнения (15) является функция

$$\widehat{w}_j(\widehat{x},\widehat{z}_j) = \widehat{w}_{0j} e^{\widehat{x}\zeta/ca_{_{\mathrm{H}}}}; \ \widehat{x} \in (b_j,\widehat{l}-\widehat{a}_j).$$

Так как нормальные перемещения непрерывны, на границе зоны контакта при $x = l - a_i$, $x = b_i$ и с учетом (9) можно записать

$$\begin{split} & 2\widehat{w}_{0j}e^{(\hat{l}-\hat{a}_{j})\zeta/c\hat{a}_{\rm H}} = 2\widehat{\delta} - \hat{z}_{j}^{2} - \hat{a}_{j}^{2}; \\ & 2\widehat{w}_{0j}e^{\hat{b}_{j}\zeta/c\hat{a}_{\rm H}} = 2\widehat{\delta} - \hat{z}_{j}^{2} - \hat{b}_{j}^{2}. \end{split}$$

Исключая постоянную \widehat{w}_{0j} из последних уравнений и преобразуя (14), получаем систему уравнений для определения границ зоны контакта a_j, b_j в каждой полосе:

$$e^{\frac{(\hat{a}_{j}+\hat{b}_{j}-1)\zeta}{c\hat{a}_{\rm H}}}(2\hat{\delta}-\hat{z}_{i}^{2}-\hat{a}_{j}^{2}) = 2\hat{\delta}-\hat{z}_{j}^{2}-\hat{b}_{j}^{2};$$

$$e^{\frac{(\hat{a}_{j}+\hat{b}_{j})\zeta}{c\hat{a}_{\rm H}}}(\hat{a}_{j}^{2}-c_{1}\hat{a}_{j}-c_{2j}) = \tilde{b}_{j}^{2}-c_{1}\tilde{b}_{j}-c_{2j}.$$
(16)

Система уравнений (16) и соотношение (13) позволяют найти распределение давлений и границу зоны контакта в *j*-й полосе при зазоре δ . Нагрузка на нож определяется уравнением (3) и преобразуется к следующему виду:

$$\hat{P} = 2 \int_{0}^{(2\hat{\delta})^{\overline{2}}} \int_{-\hat{a}(z)}^{\hat{b}(z)} \hat{p}(\hat{x}, \hat{z}) d\hat{x} d\hat{z} = 2 \sum_{j=1}^{N} \Delta \hat{z} \int_{-\hat{a}_{j}}^{\hat{b}_{j}} \hat{p}_{j}(\hat{x}, \hat{z}_{j}) d\hat{x}, \qquad (17)$$

где (2δ)^{1/2} – полуширина площадки контакта в направлении оси о*z*.

Схема сил, действующих на нож, показана на рис. 3 (где T_d , P_l – тангенсальная и нормальная составляющие силы реакции волокнистой прослойки на нож).

Для площадки контакта (a + b) ножей гарнитуры имеем

$$\begin{split} \hat{P}_{e} &= 2 \sum_{j=1}^{N} \Delta \hat{z} \int_{-\hat{a}_{j}}^{\hat{b}_{j}} \hat{p}_{j}(\hat{x}, \hat{z}_{j}) \cos \varphi(\hat{x}) d\hat{x}; \\ \hat{T}_{d} &= 2 \sum_{j=1}^{N} \Delta \hat{z} \int_{-\hat{a}_{j}}^{\hat{b}_{j}} \hat{p}_{j}(\hat{x}, \hat{z}_{j}) \sin \varphi(\hat{x}) d\hat{x}; \\ \hat{M} &= \iint_{\Omega} \hat{x} \hat{p}(\hat{x}, \hat{z}) d\hat{x} d\hat{z}, \end{split}$$
(18)

где \widehat{M} – момент сопротивления движению ножа.

Анализ выражения (13) и системы уравнений (16) показывает, что контактные характеристики для ножей гарнитуры зависят от безразмерных параметров: относительного зазора $\frac{\delta}{R}$; свойств волокнистой прослойки $c = \frac{T_{\varepsilon}}{T_{\sigma}}$; параметров, характеризующих нагрузку $\widehat{P} = \frac{2P}{R^3} \frac{h}{E^*}$; аналога числа Деборы $\zeta = \frac{2a_{\rm H}}{T_{\sigma V}}$; относительного шага между ножами гарнитуры $\frac{l}{R}$.

Результаты проведенных теоретических исследований подтверждены многочисленными экспериментами.

СПИСОК ЛИТЕРАТУРЫ

1. Гончаров В.Н. Теоретические основы размола волокнистых материалов в ножевых мельницах: автореф. дисс. ... д-ра техн. наук. Л., 1990. 31 с.

2. Горячева И.Г. Контактная задача качения вязкоупругого цилиндра по основанию из того же материала // ПММ. 1973.(37), № 5. С. 877–885.

3. Джонсон К. Механика контактного взаимодействия. М.: Мир, 1989. 509 с.

4. *Haines D.J., Ollerton E.* Contact stress distributions on elliptical contact surfaces subjected to radial and tangential forces// Proc. Inst. Mech. Engrs. 1963. (177), 95.

Поступила 17.01.12

S.N. Vikharev

The Ural State Forest Engineering University

Contact Interaction of Mill Blades with Wood Pulp

Mechanics of contact interaction of blades is considered in view of specific features of the fibrous layer. A mathematical model connecting parameters of contact of blades and a fibrous layer has been developed.

Key words: contact interaction, blades, fibrous layer.