С. 3—15. [3]. Количественная спектроскопия ЯМР ¹Н и ¹³С лигнина / Л. В. Канния. Н. П. Дейнеко, Д. Ф. Кушнарев и др. // Химия древесины.— 1989.— № 6.— С. 17—14]. Количественная спектроскопия ЯМР ¹Н и ¹³С лигнинов ели (Picea obovata), о ны (Populus tremula) и лиственницы сибирской (Larix sibirica) / Л. В. Каницкая, И. Калихман, С. А. Медведева и др. // Химия древесины.— 1992.— № 4—5.— С. 73—15]. Лигнины / Под ред. К. В. Сарканена, К. К. Людвига; Пер. с англ.— М.: Л. пром-сть, 1975.— 629 с. [6]. Определение содержания фрагментов С, СН, СН₂ и С. методом спинового эха / В. М. Полонов, Г. А. Калабин, Д. Ф. Кушнарев, В. П. Л. тышев // Химия твердого топлива.— 1984.— № 4.— С. 5—15. [7]. Практические рабоглю химии древесины и целлюлозы / А. В. Оболенская, В. П. Щеголев, Г. Л. Аким. др.— М.: Лесн. пром-сть, 1965.— 411 с. [8]. Спектроскопия ЯМР ¹Н как метод идстификации гидроксилсодержащих фрагментов лигнина / Л. В. Каницкая, С. А. М. ведева, С. З. Иванова и др. // Химия древесины.— 1987.— № 6.— С. 3—10. [9] ч. да ко в. М. И. Хромофоры компонентов древесины // Химия древесины— 1978. № 2.— С. 3—16. [10]. В а 11 е у С. W., D е п с е С. W. Reactions of alkaline hydrogoperoxide with softwood lignin model compounds, spruce milled-ground wood lignin and spruce groundwood // ТАРРІ.— 1969.— Vol. 52. N. 3.— Р. 491—492. [11], Но N. S., G 1 a s e r W. On possible chromophoric structures in wood and pulps. Asurvey of the present state of knowledge // Polym. Plast. Technol. Eng.— 1979.— Vol. 12 N. 2.— Р. 159—179. [12]. К а 1 ј п о w s k і Н. О., В е г g е г S., В г а ц п. S. Carbon - 1988.— 776 р. [13]. К г і п g s t a d K. Р., М о г с к R. NMR spectra of Kraft lignin // Holzforschung.— 1983.— Вd. 37, Н. 5.— S. 237—244. [14]. У і у а та к., N а г а то о Еffects of chromophoric groups on the color of various lignins // ТАРРІ.— 1978 Vol. 27, N 11.— Р. 530—535.

Поступила 30 июня 1993:

УДК 546.655.3/.4

## ИОН-МОЛЕКУЛЯРНОЕ СОСТОЯНИЕ СУЛЬФАТОВ ЦЕРИЯ (III, IV) В СЕРНОКИСЛОМ РАСТВОРЕ

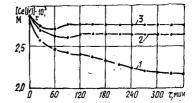
О. С. БРОВКО, К. Г. БОГОЛИЦЫН, А. М. АЙЗЕНШТАДТ, К. А. БУРКОВ

Архангельский лесотехнический институт

Способность солей церия активно вступать в окислительно-восстановительные взаимодействия с различными соединениями, которые в подвергаются окислению более «мягкими» системами, открывает возможности для использования редокс-системы церий (IV), церий (III) с целью определить компонентный состав технологических растворов предприятий химической переработки древесины. Поэтому понятен интерес, проявляемый в последнее время различными исследователями [3] к решению подобных аналитических задач. Однако в этих работам не учитывается состав сернокислых растворов церия, что определяем характер взаимодействия в системе. Решение каждой конкретной задачи требует создания оптимальных условий, что невозможно без изучения состояния и устойчивости солей церия (III, IV) в растворе.

Согласно [2, 7], растворы солей церия (IV) являются достаточного устойчивыми соединениями, причем реакция разложения воды ускоря ется под воздействием катализаторов либо УФ-облучения. Этот процесс в заметной степени протекает лишь в растворах церия (IV) в азогной и хлорной кислотах, тогда как титр его сернокислых растворов и меняется даже после получасового кипячения. Этот факт может быть объяснен усиленным ацидокомплексообразованием в сернокислых растворах церия (IV). Однако, как установлено нашими исследованиями [3], наряду с этим процессом, даже в достаточно кислом растворе солей

церия (IV) активно протекают процессы гидролиза, способные приводить к образованию гидроксосолей. Конкурирование этих двух процессов и определяет картину ион-молекулярных равновесий в сернокислом растворе солей церия (IV). Кроме того, не исключена возможность протекания процесса самопроизвольного перехода окисленной формы окислительно-восстановительной системы (ОВС) в восстановленную, что имеет место, например, для ОВС феррицианид-ферроцианид калия в щелочной среде [8].


Для проведения экспериментов по изучению устойчивости и состава сернокислых растворов солей церия использовали УФ- и КР-спектроскопию, потенциометрию и вискозиметрию. В качестве реагентов применяли серную кислоту марки «х. ч.», тетрагидрат сульфата церия (IV) марки «ч. д. а.» и сульфат церия (III) марки «ч. д. а.». Концентрацию ионов церия (IV) определяли титрометрически с солью Мора, церия (III) — перманганатом калия. В ходе работы также использовали сульфаты натрия, калия и аммония марки «о. с. ч.», хлорную кислоту и гид-

роокись натрия марки «х. ч.».

Изменение оптической плотности сернокислых растворов (III, IV) фиксировали с помощью спектрофотометра «Specord-M40», изменение ЭДС — иономера И-120. Исследуемый раствор солей церия помещали в стеклянную термостатируемую ячейку, изолированную от доступа света и воздуха, снабженную измерительным (платиновым) и вспомогательным (хлорсеребряным) электродами. Из ячейки раствор перистальтическим насосом подавали в проточную кювету спектрофото-

Проведенные исследования позволили установить, что оптическая плотность в области 200...500 нм и ЭДС сернокислых растворов солей церия (III) не изменяются в течение 20 ч, тогда как для сернокислых растворов церия (IV) они уменьшаются. Этот факт свидетельствует о стабильности растворов церия (III) и об интенсивном протекании в растворах церия (IV) процессов гидролиза, комплексообразования и диспропорционирования. С целью оценить вклад каждого из возможных процессов в общую картину самопревращений и зависимость их как от концентрации растворителя, так и от исходной концентрации окислителя проведен эксперимент с варьированием этих параметров. Установлено, что с уменьщением концентрации серной кислоты (1,00; 0,68;0,28 М) в растворе интенсивнее протекают процессы, приводящие к снижению концентрации: окислителя. (Концентрацию определяли по изменению оптической плотности раствора при характеристической полосе поглощения церия (IV) 320 нм.) При этом концентрация церия (IV) в первых двух растворах через 1 ч после приготовления стабилизируется, тогда как процессы, идущие в растворе церия (IV) в 0,28 М серной кислоте полностью не заверщаются в течение всего эксперимента (рис. 1). Незначительное уменьшение концентрации церия (IV) в 0,68 и 1,00 М серной кислоте (4 и 1 % соответственно) может быть объяснено переходом  $Ce^{4+} \rightarrow Ce^{3+}$ до установления равновесия в растворе. Это предположение подтверждается тем, что добавление равновесного

Рис. 1. Изменение во времени (т) молярной концентрации (IV) в растворах серной кислоты различной концентрации: 1 — 0,28; 2-0.68; 3-1.00 M



количества церия (III) в исходный раствор приводит к стабилизации системы по контролируемому параметру. Повышение исходной концентрации окислителя, как и увеличение концентрации серной кислоты, также способствует стабилизации процессов, протекающих в растворе (рис. 2).

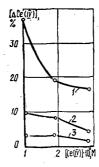



Рис. 2. Относительное изменение молярной концентрации церия (IV) в зависимости от исходной концентрации окислителя в растворах серной кислоты различной концентрации; I = 0.28; 2 = 0.68; 3 = 1.00 М

Таким образом, для повышения устойчивости сернокислых растворов церия (IV) следует использовать в качестве растворителя серную кислоту, имеющую концентрацию больше 0,3 M, и готовить растворы церия (IV) с концентрацией, превышающей  $2.0 \cdot 10^{-3} \ M$ .

Помимо рассмотренных процессов диспропорционирования, в сернокислом растворе церия (IV) активно протекает комплексообразование. Согласно [4, 9, 10], церий (IV) способен образовывать с сульфат-ионом комплексы следующего вида:  $CeSO_4^{2+}$ ,  $Ce(SO_4)_2$ ,  $Ce(SO_4)_3^{2-}$  и  $Ce(SO_4)_4^{4-}$ . Приведенные данные о величинах констант нестойкости и областям существования комплексных соединений противоречивы. Сложность состава сернокислых растворов церия (IV), содержащих ацидо- и гидроксокомплексы, подтверждается наличием нескольких минимумов в спектре второй производной (рис. 3). Этот факт может свидетельствовать о существовании нескольких форм церия (IV), поглощающих в области характеристической полосы при длине волны  $\lambda = 320$  нм.

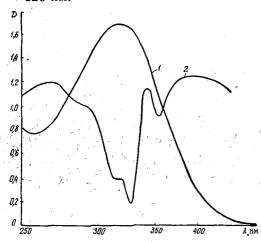



Рис. 3. Спектр  $2.8 \cdot 10^{-3}$  М раствора церия (IV) в 1 М серной кислоте (1) и его вторая производная (2)

Для описания картины межчастичных взаимодействий в тройном растворе  $Ce^{4+}$ ,  $H^+//SO_4^{2-}-H_2O$  использовали метод вискозиметрии. Динамическую вязкость  $\eta$  растворов измеряли методом избыточного внешнего давления [1], в основе которого лежит закон Пуазейля для вязкого течения:

$$\eta = kP\tau$$

где k — константа, определяемая характеристиками вискозиметра;

P — прилагаемое давление;

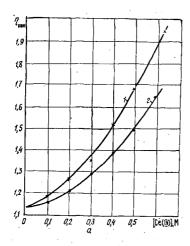
т — время истечения жидкости.

На основании экспериментальных данных строили реологические кривые  $F = f(1/\tau)$  для исследуемых растворов и воды, а относительную динамическую вязкость растворов лоти рассчитывали по формуле

$$\eta_{\text{OTH}} = \frac{\eta_{\text{p}}}{\eta_{\text{H}_2\text{O}}} = \frac{\text{tg}\,\alpha_{\text{p}}}{\text{tg}\,\alpha_{\text{H}_2\text{O}}} \,. \label{eq:eta_theta_theta_theta_theta}$$

а — угол наклона реологической прямой.

Избыточную вязкость определяли по следующей зависимости:


$$\Delta \eta^{\rm e} = \eta_{\rm t. p} - \eta_{\rm H_2SO_4},$$

где

 $\eta_{\mathrm{r.\ p}}^{+}$  — вязкость тройного раствора;

 $\eta_{\rm H_2SO_1}$  — вязкость бинарного раствора серной кислоты такой же концентрации.

С целью изучить влияние концентрации ионов церия (IV), SO<sub>4</sub><sup>2</sup>и кислотности среды на процессы, протекающие в изучаемой системе, были определены величины относительной динамической вязкости растворов, имеющих следующие концентрации компонентов:  $[H_2SO_4] = 0.5 M$ ,  $[Ce(SO_4)_2] = 1,100...0,625$  M;  $[H_2SO_4] = 0,5...5,0$  M,  $[Ce(SO_4)_2] =$ = 0,2 M при 25 и 50 °C. Полученные экспериментальные данные приведены на рис. 4 и в табл. 1.



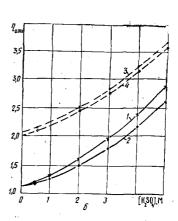



Рис. 4. Зависимость относительной динамической вязкости от концентрации Се (IV) (a) и серной кислоты (б) для растворов церия (IV) (1, 2) и серной кислоты (3, 4) при различной температуре: 1, 3 — 25; 2, 4 — 50 °C

Анализ температурной зависимости вязкости тройных растворов позволяет качественно оценить влияние температуры на протекающие процессы. Увеличение температуры в 2 раза приводит к уменьшению вязкости тройного раствора примерно на 10 % (рис. 4), тогда как в аналогичных системах без комплексообразования вязкость уменьшается не более чем на 3...5 %. Это свидетельствует о том, что с ростом температуры происходит усиление процессов, деструктирующих раствор, т. е.

|           |           |             | Τε           | блиц  | a 1  |
|-----------|-----------|-------------|--------------|-------|------|
| Изменение | вязкости  | сернокислы  | х растворов  | церия | (IV) |
| B 3       | ависимост | ги от конце | нтрации кис. | поты  |      |

| [H <sub>2</sub> SO <sub>4</sub> ],<br>моль/л                                         | [Ce(SO <sub>4</sub> ) <sub>2</sub> ],<br>моль/л                                                          | η <sub>ОТН</sub>                                                                                                                                                                 | Δηε                                                                                                   |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 0,50<br>0,50<br>0,75<br>1,00<br>2,00<br>3,00<br>4,00<br>5,00<br>0,50<br>0,50<br>0,50 | 0,100<br>0,200<br>0,200<br>0,200<br>0,200<br>0,200<br>0,200<br>0,200<br>0,300<br>0,400<br>0,500<br>0,625 | 1,216/1,156<br>1,284/1,207<br>1,336/1,281<br>1,338/1,352<br>1,604/1,513<br>1,984/1,616<br>2,406/2,195<br>2,953/2,642<br>1,345/1,291<br>1,536/1,401<br>1,660/1,506<br>1,917/1,730 | +0,15/+0,07<br>+0,15/+0,04<br>+0,15/+0,13<br>+0,10/+0,07<br>+0,13/+0,04<br>+0,17/+0,02<br>+0,29/-0,03 |

 $\Pi$  р и м е ч а н и е. В числителе приведены данные для температуры 25 °C, в знаменателе — 50 °C.

интенсификация ацидокомплексообразования, и уменьшение избыточной вязкости. Анализ изменения избыточной вязкости при варьировании концентрации серной кислоты показал, что при добавлении серной кислоты в тройном растворе будут одновременно наблюдаться подавление гидролиза иона  $Ce^{4+}$  и усиление ацидокомплексообразования. Первый процесс приводит к исчезновению крупных слабогидратированных гидроксокомплексов, а второй — к образованию ацидокомплексов, сопровождающемуся освобождением воды из гидратной сферы сильногидратированных ионов  $SO_4^{2-}$ . Преобладание положительных значений избыточной вязкости указывает на доминирование в изученных растворах вклада первого из указанных процессов. (Лишь при температуре 50 °C в исследуемой области концентраций при  $[H_2SO_4] > 4,5$  М начинает преобладать вклад усиления комплексообразования.) Немонотонный харак-

Таблица 2 Отнесение полос в КР-спектрах сернокислого раствора церия (IV)

|                                                                                                         | -                                           | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Частота<br>колебаний,<br>см — 1                                                                         | Отнесение                                   | Частица                                                                                                                                                                                                                   |
| 375<br>415 420<br>420 430<br>520, 650<br>590<br>890<br>980<br>1050<br>1165<br>1165<br>1180<br>1200 1210 | *Me-O *OSO *OSO *OSO *OSO *S-O *S-O *S-O *S | $Ce(H_2O)_n^4 + CBR3. SO_4^2 - CBOO. SO_4^2 - HSO_4^2$ Бидент. коор. $SO_4^2 - HSO_4^2$ Связ. $SO_4^2 - HSO_4^2$ Своб. $SO_4^2 - HSO_4^2$ $HSO_4^2$ $HSO_4^2$ $CBR3. SO_4^2 - GBOO. SO_4^2 - CBOO. SO_4^2 - CBOO. SO_4^2$ |

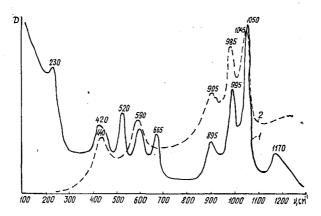



Рис. 5. Спектры KP систем 0,1 M Ce (SO<sub>4</sub>)  $_2$  + + 3,0 M H<sub>2</sub>SO<sub>4</sub> (1) и 0,1 M Ce<sub>2</sub>(SO<sub>4</sub>)  $_3$  + 5,0 M H<sub>2</sub>SO<sub>4</sub> (2)

тер концентрационной зависимости избыточной вязкости связан, по-видимому, с перераспределением форм комплексов в растворе.

Эти выводы подтверждаются характером изменения КР-спектров солей церия (III, IV) в зависимости от концентрации церия и растворителя. КР-спектры растворов сульфатов церия (III, IV), серной и хлорной кислот, сульфата и бисульфата калия в воде и  $D_2O$  измерены на спектрофотометре ДФС-52 с аргоновым лазером ( $\lambda=514$  нм) при комнатной температуре. КР-спектры сульфатов церия (III, IV) приведены на рис. 5. Отнесение наблюдаемых в спектрах полос к тем или иным колебаниям выполнено на основании литературных данных [5] и наших исследований зависимости относительной интенсивности полос от концентрации добавляемой серной кислоты, измеренных значений изотопного сдвига  $\nu_{\rm H}/\nu_{\rm D}$  и степени деполяризации р (табл. 2).

Установлено, что КР-спектры растворов сульфата церия (III) не имеют новых полос по сравнению с серной кислотой и сульфатами, что может служить свидетельством отсутствия процессов комплексообразования в данной системе.

В целях использования интенсивности полос при интерпретации данных, КР-спектры сернокислого церия (IV) были нормированы. Рассчитаны величины относительных интенсивностей. За 20 условных единиц принята интенсивность полосы деформационного колебания иона

Таблица 3 Изменение относительной интенсивности полос КР-спектров в сернокислом растворе церия (III) и (IV) в зависимости от состава раствора

| Ча-<br>стота<br>коле-<br>баний,<br>см — 1              | Интенсивность<br>полос<br>раствора<br>0,1 M Се <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> :<br>: 0,6 M H <sub>2</sub> SO <sub>4</sub> | Относительная интенсивность полос в растворе, имеющем состав $X$ M Ce (SO <sub>4</sub> ) $_2$ : $Y$ M H $_2$ SO $_4$ |                                               |                                         |                                               |                                              |                                               |                                              |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|
|                                                        |                                                                                                                                         | 0,0:1,0                                                                                                              | 0,2:0,5                                       | 0,2:1,0                                 | 0,2:2,0                                       | 0,2:3,0                                      | 0,2:4,0                                       | 0,2:5,0                                      |
| 415<br>520<br>590<br>665<br>900<br>980<br>1050<br>1165 | 20*<br>—<br>22<br>—<br>11<br>70<br>60                                                                                                   | 20*                                                                                                                  | 20<br>113<br>26<br>85<br>15<br>51<br>79<br>54 | 20<br>89<br>23<br>67<br>23<br>63<br>121 | 20<br>68<br>25<br>52<br>22<br>58<br>102<br>36 | 20<br>44<br>23<br>33<br>23<br>57<br>98<br>31 | 20<br>35<br>23<br>28<br>24<br>58<br>101<br>26 | 20<br>28<br>25<br>23<br>23<br>56<br>93<br>22 |

<sup>\*</sup> В этих растворах аналогичные колебания имеют частоту 430 см  $^{-1}$ .

 $SO_4^{2-} - \delta_{OSO}$  (табл. 3), максимум которой в церий (IV)-содержащих растворах находится при 415 см $^{-1}$  (см. табл. 2). Как видно из табл. 3 и рис. 5, КР-спектры церий (IV)-содержащих систем имеют полосы собственных колебаний сульфат- и бисульфат-ионов, как координированных, так и свободных (415, 590, 900, 980 и 1050 cm<sup>-1</sup>). Эта группа полос имеет практически постоянные относительные интенсивности, тогда как для другой группы полос (520, 650, 1165 см $^{-1}$ ), существующих только в системе Се $^{4+}$ , H $^+$ // SO $_4^{2-}$  —  $H_2$ О, интенсивность уменьшается при повышении концентрации серной кислоты. Полосы в области до 400 см - 1 относят к полносимметричному колебанию аква-иона церия (IV). Определяя изотопный сдвиг и степень деполяризации для этой полосы и сравнивая с подобными показателями для перхлоратной системы, устанавливаем, что аква-комплексы церия (IV) в сульфатной и перхлоратной системах имеют различную природу. Следует предположить, что в сульфатных системах внутренняя координационная сфера иона церия содержит сульфат- или гидроксил-ионы. Наличие сильных полос при 520 и 650 см $^{-1}$ , деполяризованных с  $v_n/v_D=1$ , позволяет предположить существование в сульфатном растворе гидроксосульфатного комплекса церия (IV) с бидентантной координацией сульфат-иона.

Следовательно, в системе  $Ce^{4+}$ ,  $H^+//SO_4^{2-} - H_2O$  возможно существование различных равновесий с участием гидроксо-, ацидо- и смешанных гидроксосульфатных комплексов, в которых ион SO<sup>2</sup>4 координирован бидентантно:

$$Ce_{aq}^{4+} \rightleftharpoons CeOH_{aq}^{3+} + H_3O_{aq}^+;$$

$$CeOH_{aq}^{3+} + SO_{4aq}^{2-} \rightleftharpoons CeOHSO_{4aq}^+;$$

$$CeOH_{aq}^{3+} + H_{aq}^+ + SO_{4aq}^{2-} \rightleftharpoons CeSO_{4aq}^{2+}.$$

Полученные экспериментальные данные позволили, оценив устойчивость и состав сернокислых растворов солей церия, подобрать оптимальные условия приготовления равновесной системы, а также установить, что состав сернокислых растворов церия (IV) зависит от концентрации растворителя, а ион-молекулярная картина равновесий в системе определяется вышеприведенной схемой.

## СПИСОК ЛИТЕРАТУРЫ

ПИСОК ЛИТЕРАТУРЫ

[1]. Барр Г. Вискозиметрия.— Л.: Изд-во АН СССР, 1938.— 238 с. [2]. Берка А., Вултерин Я., Зыка Я. Новые редокс-методы в аналитической химии.— М.: Химия, 1968.— 318 с. [3]. Боголицын К. Г., Бровко О. С. Оценка устойчивости водных растворов солей церия, используемых для характеристики редокс-свойств компонентов технологических растворов ЦБП // Лесн. журн.— 1987.— № 2.— С. 80—82.— (Изв. высш. учеб. заведений). [4]. Бондарева Т. Н., Барковский В. Ф., Великанова Т. Ф. Комплексные соединения церия (IV) с сульфат-ионами // Журн. неорг. химии.— 1965.— Т. 10, вып. 1.— С. 127—131. [5]. Накамото К. ИК спектры и спектры КР неорганических и координационных соединений.— М.: Химия, 1991.— 536 с. [6]. Потенциометрический анализ с использованием растворов сульфатов церия / Г. В. Дугин, А. М. Писаревский, И. П. Полозова, М. М. Шульц. // Журн. прикладной химии.— 1986.— Т. 79, № 1.— С. 22—27. [7]. Скуг Д., Уэст Д. Основы аналитической химии.— 1986.— Т. 79, № 1.— С. 22—27. [8]. Устойчивость циано-комплексов железа (II) и (III) в водных растворах / К. Г. Боголицын, А. М. Айзенштадт, Г. М. Полторацкий, В. Г. Крунчак // Журн. прикладной химии.— 1987.— № 9.— С. 1965—1969. [9]. В hansa № G. R., Мathur D. L., Rao S. P. Oxidimetric determination of sugar with vanadium (V) and cerium (IV) // Indian J. Chem.— 1967.— Vol. 5, n. 9.— Р. 454—455. [10]. Нат d wick Т. J., Robertson E. Association of ceric ions with sulphate (a spectral study) // Can. J. Chem.— 1951.— Vol. 29.— Р. 828—837. P. 828--837.