УДК 630*23(477)

В.П. Шлапак

ФИТОМАССА КОРНЕЙ В КУЛЬТУРАХ СОСНЫ В СВЕЖИХ СУБОРЯХ И СУДУБРАВАХ

В условиях Черкасского бора установлены закономерности формирования массы корней сосны в зависимости от глубины их распространения, возраста культур и типа условий местопроизрастания.

Ключевые слова: культуры сосны, корни, фитомасса, возраст, тип условий местопроизрастания, Черкасский бор.

В истории лесного хозяйства Украины одно из видных мест занимает пристепной Черкасский бор [7, 12]. Накоплен большой лесокультурный опыт, однако в лесоводственной литературе он освещен недостаточно.

Нами изучена фитомасса корней в культурах сосны свежих суборей и судубрав, что дает возможность частично восполнить этот пробел. Сосна, обладающая большой пластичностью корневой системы, является практически единственной лесообразующей породой на очень сухих и бедных элементами питания незадернелых песках.

Изучению роста, формирования фитомассы корневых систем сосны в различных условиях местопроизрастания, посвящены многочисленные исследования [1–3, 5, 6, 8–11, 13]. Д.П. Торопогицким [8] установлено, что с увеличением глубины предпосадочной обработки почвы под культуры сосны на Нижнеднепровских песках распространение корней возрастает. В то же время В.П. Головащенко и М.В. Юр [13], изучая влияние обработки почвы в условиях свежей субори Боярской лесной опытной станции на корненаселенность 6-летних культур, установили, что даже глубокая (50 ... 60 см) безотвальная вспашка не оказывала положительного влияния на характер формирования и распространения корней сосны. Такие, казалось бы взаимоисключающие, выводы можно объяснить физическими свойствами песчаных почв в каждом отдельном случае. Однако бесспорно, что предпосадочная обработка почвы вызывает лишь кратковременное улучшение ее физических свойств. Поскольку в песчаных почвах содержание гумуса и илистых частиц незначительно, после первого глубокого промывания (дожди) или весеннего снеготаяния наблюдается сильное уплотнение почвы и ее объемная масса приближается к исходной при любом способе обработки почвы. С учетом этого Б.И. Логгинов, М.И. Гордиенко и Т.В. Дубинин [4] указывали на нежелательность рыхления почвы в междурядьях лесных культур, созданных на слаборазвитых бедных песчаных почвах, так как в таких условиях физиологически активные корни сосны, сосредоточенные в 10-20-сантиметровом слое, сильно повреждаются. По степени верхнем заселения почвенных горизонтов корнями культивируемых видов можно

судить об устойчивости культур, их благонадежности и способности выжить в случае резкого изменения условий среды.

Для оценки корненаселенности почвы в насаждениях Черкасского бора нами проведен учет массы корней на шести пробных площадях в свежей субори (B_2) и на трех в свежей судубраве (C_2), повторность 3-кратная. Массу корней учитывали в монолитах объемом 0,025 м³ ($0.5 \times 0.5 \times 0.1$ м) с учетом генетических горизонтов почвы глубиной до 2,6 м. После отбора и отмывки корни делили на две фракции: физиологически активные диаметром до 2 мм и более 2 мм, куда входили все проводящие. Одновременно в верхних горизонтах почвы учитывали массу корней травянистых растений.

Оценивая количественные характеристики (т/га) массы корней в культурах сосны состава 10С и возраста 30 ... 110 лет, находим, что общая масса корней как в единице объема почвы, так и по площади (1 га) в границах корнеобитаемой толщи почвы (2,6 м) с возрастом увеличивается в B_2 и C_2 (табл. 1). При общей тенденции увеличения эти изменения в свежей судубраве выражены более существенно, чем в субори. Если в свежей субори общая масса корней на 1 га в культурах возраста 34 года составляет 7,79, а 74 года – 9,71 т/га, то в судубравах в 30 лет – 8,89; 55 лет – 22,43; 110 лет – 24,39 т/га.

Распределение физиологически активных корней имеет обратную зависимость от возраста культур: по мере старения древостоя масса корней в единице объема почвы уменьшается. Отмеченные закономерности можно объяснить возрастными стадиями развития древостоя, активностью физиологических процессов в них. Так, в молодом и среднем возрасте культур для обеспечения высокой интенсивности фотосинтеза требуется

Таблица 1

№	Возраст	Абс. сухая масса корней в корнеобитаемом слое почвы, т/га / %							
пробной	культур,	Co	сна	Древесно-					
площади	лет	≤ 2 мм	> 2 _{MM}	кустарниковые	Трава	Итого			
				породы					
Свежая суборь (В2)									
48	34	3,17	<u>4,54</u>	_	0,08	<u>7,79</u>			
		40,7	58,3	_	1,0	100,0			
50	74	<u>2,81</u>	6,88	_	0,02	<u>9,71</u>			
		28,9	70,9	_	0,2	100,0			
140	110	<u>1,66</u>	<u>7,45</u>	<u>1,40</u>	<u>2,49</u>	<u>13,0</u>			
		12,8	57,3	10,8	19,1	100,0			
Свежая судубрава (C_2)									
81	30	<u>1,97</u>	<u>4,86</u>	1,93	0,13	8,89			
		22,2	54,7	21,7	1,4	100,0			
82	55	<u>5,34</u>	15,08	<u>1,21</u>	0,80	<u>22,43</u>			
		23,8	67,2	5,4	3,6	100,0			
39	110	<u>2,07</u>	<u> 19,84</u>	<u>1,14</u>	1,34	<u>24,39</u>			
		8,5			5,4	100,0			

активная подача минеральных элементов питания из почвы к фотосинтезирующему аппарату хвои, что может обеспечить только мощная физиологически активная корневая система. Отток ассимилятов из хвои к корням, в свою очередь, способствует развитию и росту последних, с возрастом они переходят из качественного состояния в количественное, т. е. накапливают большую по массе корневую систему.

Исследуя корненаселенность почвы сосной, нельзя не обратить внимание и на интересный факт развития корней злаковых травянистых видов в Черкасском бору. Здесь, в отличие от центральных черноземных областей и таежной зоны, злаковая травяная растительность по мере старения основного древостоя развивается более активно. Если в возрасте культур 34 года масса корней травы в суборевых условиях (B_2) составляет всего 1 % от общей массы корней деревьев, кустарников и трав, то в возрасте 110 лет ее участие уже возрастает до 19,1 %. Такая же закономерность, хотя и при значительно меньших запасах, наблюдается и в суборевых условиях (C_2).

Оценивая распределение физиологически активной части корней сосны в судубравах и суборях (табл. 2), видим, что в первом типе физиологически активная часть корневой системы формирует значительно больший объем ризосферы, достигающий глубины 1 м. Так, в суборях на глубине 50 ... 100 см в 110-летних культурах расположено всего 19,2 % мелких корней, в судубравах 32,4 % от общей массы физиологически активной части корневой системы. Несмотря на относительную бедность древнеречных песков в целом, в условиях Черкасского бора они представляют благоприятную среду для успешного роста сосны. Высокая скважность и рыхлость песчаного профиля позволяют сосне глубоко проникать в нижележащие горизонты, что спасает ее от недостатка влаги в засушливые годы.

Таблица 2

№	Возраст	Содержание абс. сухой массы физиологически активных						
пробной	культур,	корней, %, по горизонтам, см						
площади	лет	020	050	50100	> 100			
Свежая суборь (В2)								
16	20	79,0	83,6	6,0	0,2			
48	34	38,8	52,6	18,0	17,1			
50	74	36,7	56,7	23,2	4,9			
78	85	54,6	69,7	12,2	3,4			
140	110	19,6	31,2	19,2	40,9			
20	20 135		26,9	23,8	19,1			
Свежая судубрава (C_2)								
81	30	52,8	61,6	13,7	15,8			
82	82 55 39,3		51,0	19,0	13,4			
39	110	28,0	39,5	32,4	10,5			

Таблица 3

Глубина	Распределение абс. сухой массы корней сосны, %, по глубине распространения								
учета,	на пробных площадях								
СМ	16	48	50	78	140	20	81	82	39
1020	62,3	25,9	25,8	31,1	13,4	6,3	41,4	27,1	19,0
2030	16,7	12,9	10,9	23,5	6,2	3,7	11,4	12,2	9,0
3040	2,6	7,7	9,8	9,5	4,8	8,4	4,1	5,3	3,3
4050	2,0	6,1	10,2	5,6	6,8	8,5	4,7	6,4	8,2
5060	2,1	5,5	10,3	4,8	5,9	3,5	4,9	5,3	11,1
6070	1,8	5,3	5,5	3,3	4,2	2,0	3,1	6,1	10,8
8090	0,8	3,9	4,3	1,9	4,6	8,4	2,8	4,2	6,3
90100	0,3	3,3	3,1	1,2	4,5	9,9	2,9	3,4	4,2
100110	0,1	3,1	2,0	1,1	4,5	7,3	1,7	2,6	3,6
110120	0,1	2,6	1,4	0,9	4,3	0,8	2,3	1,7	2,7
120130	0,1	2,1	0,8	0,7	4,6	4,1	2,2	1,4	1,6
130140	_	2,1	0,5	0,3	4,3	3,8	2,4	1,1	1,1
140150	_	1,7	0,2	0,3	4,3	1,5	2,3	1,8	0,8
150160	_	1,5	_	0,1	3,0	0,6	_	_	_
160170	_	1,3	_	_	2,6	0,6	1,6	1,4	0,5
170180	_	1,3	_	_	4,4	0,3	1,1	0,9	0,1
180190	_	0,9	_	_	5,6	0,1	1,1	0,9	0,1
190200	_	0,5	_	_	2,9	_	0,7	0,5	_
200260	_	_	_	_	0,4	_	0,4	1,1	_
Итого	88,9	87,7	84,8	84,3	91,3	69,8	91,1	83,4	82,4

Примечание. Пробные площади 16, 48, 50, 78, 140, 20 расположены в ТУМ B_2 ; пробные площади 81, 82, 39 – в ТУМ C_2 .

Обращает на себя внимание распределение массы физиологически активных корней сосны по глубине их распространения (табл. 3). Так, в суборевых условиях местопроизрастания основная масса корней сосредоточена в 120–160-сантиметровом слое за исключением 34-летних культур сосны, где глубина проникновения корней составила 190 ... 200 см, а в судубравах, где почвы богаче и режим питания для сосны лучше, корни распространены до 260 см.

Таким образом, в условиях Черкасского бора фитомасса корней имеет тенденцию к увеличению с возрастом как в суборях, так и особенно в судубравах. В целом 82,4 ... 91,3 % массы физиологически активных корней сосредоточено в слое почвы 260 см, притом в 20-летних культурах в 30-сантиметровом слое почвы их доля достигает 79,0 %. С увеличением возраста культур львиная доля физиологически активных корней уходит в более глубокие горизонты, как правило, до 1 м.

СПИСОК ЛИТЕРАТУРЫ

1. *Баглай, А.Н.* Каким способом лучше восстанавливать сосну [Текст] / А.Н. Баглай //Лесн. хоз-во. - 1966. - № 5. - С. 35-36.

- 2. *Баглай, А.Н.* Формирование корневых систем сосны в культурной части Усманского бора в зависимости от условий местопроизрастания [Текст]: автореф. дис. ... канд. с.-х. наук / А.Н. Баглай. К., 1962. 21 с.
- 3. *Данилов*, *М.Д*. Распространение корней по горизонтам на лесосеках сосновых насаждений [Текст] / М.Д. Данилов // Почвоведение. 1947. № 2. С. 32–36.
- 4. *Логгинов*, *Б.И*. Взаимодействие корневых систем сосны и дуба в насаждениях свежих суборей [Текст] / Б.И. Логгинов, М.И. Гордиенко, Т.В. Дубинин // Лесоводство и агролесомелиорация: сб. науч. тр. К.: УСХА, 1965. С. 61–67.
- 5. *Молчанов*, *А.А.* Гидрологическая роль сосновых лесов на песчаных почвах [Текст] / А.А. Молчанов. М.: Изд-во АН СССР, 1952. 448 с.
- 6. *Орлов, А.Я.* Почвенная экология сосны [Текст] / А.Я. Орлов, С.Г. Кошелков. М.: Наука, 1971. 323 с.
- 7. *Редько, Г.И.* Черкасский бор: история, лесонасаждения, использование [Текст] / Г.И. Редько, В.П. Шлапак. К.: Лыбидь, 1991. 104 с.
- 8. *Торопогрицкий, Д.П*. Влияние глубокой подготовки почвы на рост культур сосны на песках [Текст] / Д.П. Торопогрицкий // Лесн. хоз-во. 1968. № 1. С. 48–50.
- 9. *Чмыр, А.Ф.* Лесные культуры [Текст]: метод. указания по обследованию и исследованию корневых систем древесных пород для студентов-дипломников по спец. 1512 / A.Ф. Чмыр. Л.: ЛТА, 1984. 37 с.
- 10. Чмыр, $A.\bar{\Phi}$. Лесные культуры [Текст]: метод. указания по обследованию и исследованию лесных культур и способы обработки полевых материалов / $A.\Phi$. Чмыр. Л.: ЛТА, 1984. 37 с.
- 11. Шинкаренко, И.В. Динамика роста и развития горизонтальных корней сосны обыкновенной [Текст] / И.В. Шинкаренко // Зап. Харьк. с.-х. ин-та им. Докучаева. Харьков: Изд-во: Харьк. ун-та, 1955. Т. 10. С. 126–134.
- 12. Шлапак, В.П. Лесоводственная оценка агротехнических приемов создания и выращивания культур сосны в Черкасском бору [Текст]: автореф. дис. ... канд. с.-х. наук / В.П. Шлапак. Л., 1990. 19 с.
- 13. *Головащенко, В.П.* Ріст соснових культур при різній глибині оранки грунту в лісових умовах [Text] /В.П. Головащенко, М.В. Юр // Вирощування і таксація лісових насаджень. Київ: УСГА, 1967. Вип. 2. С. 70–85.

Национальный дендрологический парк «Софиевка» НАН Украины

Поступила 10.11.04

V.P. Shlapak

Roots Phytomass in Pine Cultures in New Subors and Sudubravas

In conditions of Cherkassy Pinery the regularities of pine root mass formation are set depending on the depth of their propagation, age of cultures and conditions of growth area.