ЛЕСНОЙ ЖУРНАЛ

1995

УДК 676.017

Я. В. КАЗАКОВ. В. И. КОМАРОВ

Казаков Яков Владимирович родился в 1966 г., окончил в 1990 г. Архангельский лесотехнический институт, аспирант кафедры технологии целлюлозно-бумажного производства Архангельского государственного технического университета. Имеет 14 научных трудов в области деформативности и прочности целлюлозно-бумажных материалов.

Комаров Валерий Иванович родился в 1946 г., окончил в 1969 г. Ленинградскую лесотехническую академию, кандидат технических наук, профессор, заведующий ка-федрой технологии ЦБП Архангельского государственного технического университета. Имеет 97 печатных работ в области исследования свойств деформативности и прочности целлюлозно-бумажных материалов.

МАТЕМАТИЧЕСКАЯ ОБРАБОТКА КРИВЫХ ЗАВИСИМОСТИ НАПРЯЖЕНИЕ — ДЕФОРМАЦИЯ, ПОЛУЧЕННЫХ ПРИ ИСПЫТАНИИ НА РАСТЯЖЕНИЕ **ЦЕЛЛЮЛОЗНО-БУМАЖНЫХ МАТЕРИАЛОВ**

Показана возможность математической обработки кривых зависимости напряжение — деформация с помощью разработанной для ПЭВМ программы, которая позволяет получать спектр характеристик деформативности и прочности, оценивающих качество целлюлозно-бумажных материалов, и рассчитывать усредняющую кривую, отражающую характер деформирования данного материала.

The possibility of stress-strain curves' mathematical processing based on PC program which enables to obtain a spectrum of deformity and strength characteristics that estimate the pulp-and-paper materials' quality as well as to calculate the mean curve which reflects the material's deformation character has been shown.

Кривая зависимости напряжение — деформация (о— є), получаемая обработкой индикаторной диаграммы нагрузка — удлинение (Р — Δl) при статических испытаниях на растяжение, позволяет оценить процесс деформирования и, являясь интегральной характеристикой механических свойств, широко применяется в материаловедении [1, 2, 7]. Такую диаграмму при исследовании целлюлозно-бумажных материалов можно получить на разрывных машинах, оснащенных устройством для

№ 1

записи нагрузки и изменения деформации образца в процессе испытаний.

С помощью математической обработки кривых зависимости $\sigma - \varepsilon$ получают спектр характеристик, оценивающих качество материалов, в том числе целлюлозно-бумажных [3, 8].

Ход кривой $\sigma - \epsilon$ зависит как от структуры материала, так и изменений в структуре, вызванных возрастающим силовым полем. При этом кривая, фиксирующая процесс разрушения, имеет во многих случаях характер, сложный для математического описания в виде функции $\sigma = f(\epsilon)$.

Обработка экспериментальной кривой связана с трудоемкой вычислительной работой, которую позволяют выполнить программы, разработанные и реализованные для ЭВМ ЕС-1022 [5, 8]. Перед проведением вычислений производят табулирование экспериментальных кривых. Для этого отрезок на индикаторной диаграмме по оси деформаций ε_{p} делят на отрезки $\delta\varepsilon_{i}$ равные 1 мм. На концах отрезков, называемых узлами интерполяции, измеряют величину нагрузки в миллиметрах. Используя метод наименьших квадратов, экспериментальные данные аппроксимируют полиномом вида

 $\sigma_i = b_0 + b_1 \varepsilon_i + b_2 \varepsilon_i^2 + \ldots + b_m \varepsilon_i^m,$

где *т* для обеспечения минимальной погрешности аппроксимации задают от 2 до 4. По первым трем точкам в узлах интерполяции строят полином второго порядка, используя который, рассчитывают характеристики начального участка зависимости. Результаты расчетов представляют в виде таблиц [8].

С введением в практику научных исследований персональных ЭВМ появилась необходимость реализовать вышеуказанный алгоритм для IBM-совместимых компьютеров. Была составлена новая программа, использующая дополнительные возможности персональных ЭВМ для ввода исходных данных и вывода результатов расчета. Введенные исходные данные записывают на магнитный диск, что дает возможность при необходимости вносить изменения и производить повторные вычисления. Результаты расчетов представляют в виде таблиц и графиков, выводят на экран дисплея и при необходимости — на печать в порядке, определяемом пользователем.

Одновременно был уточнен алгоритм расчета характеристик начального и конечного прямолинейных участков кривой зависимости $\sigma - \varepsilon$. Для этих участков определяются коэффициенты уравнений аппроксимирующих прямых, если количество узлов интерполяции в них составляет более двух. При наличии у экспериментальной кривой начального и (или) конечного прямолинейных участков модули упругости E_1 и E_2 рассчитывали на основании угла наклона аппроксимирующей прямой, в противном случае — тангенса угла наклона касательных в первой и последней точках кривой. Аппроксимацию экспериментальных данных вышеприведенным полиномом производили после исключения точек, попадающих на прямолинейные участки. Расширить возможности программы позволили включенная в нее подпрограмма для расчета времени релаксации напряжения *n* при использовании уравнения типичного тела [4].

В связи с высокой неоднородностью структуры целлюлозного волокнистого материала характер диаграммы σ—є и величины получаемых характеристик могут различаться в параллельных испытаниях одной выборки. Поэтому особое значение приобретает статистическая обработка результатов.

После выполнения вычислений разработанная нами программа выдает результаты всех параллельных испытаний образцов одной

Таблица 1

Математическая обработка кривых зависимости с — є для образцов сульфатной целлюлозы (степень помола 35° ШР; ширина образца 15 мм; длина 100 мм; скорость испытаний 50 мм/мин)

Но- мер	E1	E2	E _ə	a1	a ^b	°э	ε,	۶p	² э	А _р .
кри- вой	МПа			МПа			%			мДж
1 2 3 4 5 6 7 8 9	6555 5606 6669 4907 6232 5026 9232 6443 6982 6982	1372 1290 1261 1314 1290 1308 1282 1348 1325 1303	2818 3195 3236 3098 3163 3183 4012 3537 3562 2863	19,0 21,9 16,8 14,3 15,8 19,6 23,3 18,7 18,9 18,1	72,7 71,0 68,1 75,2 73,6 81,1 78,2 72,8 65,0 78,2	28,7 32,7 25,3 31,1 27,9 39,1 35,5 32,3 29,4 29,8	0,30 0,10 0,26 0,30 0,26 0,40 0,26 0,30 0,28 0,30	3,20 3,20 3,20 3,60 3,60 3,40 3,60 2,80 3,00 2,60 3,00	0,56 0,69 0,51 0,78 0,60 0,91 0,53 0,64 0,54	214,0 226,2 220,9 264,2 245,0 282,1 229,7 208,7 166,5 271,9
Среднее арифметическое значение показателей										
	6388	1310	3267	18,7	73,6	31,2	0,31	3,22	0,64	232,9
	Среднее квадратическое отклонение									
	1213	3 2	356	2,7	4,9	4,0	0,05	0,35	0,13	34,3
Коэффициент вариации, %										
	19,0	2,5	10,9	14,3	6,6	12,7	17,2	10,7	19,8	14,7
Номер кривой, наиболее близкой к средней										
-	8	6	3	8	5	4	1	1	8	7
Примечание. E_1 — начальный модуль упругости; E_2 — модуль упру-										

примечание. E_1 — начальный модуль упругости; E_2 — модуль упругости; гости в области предразрушения; E_3 — эффективный модуль упругости; σ_1 — предел упругости; σ_p — разрушающее напряжение; σ_3 — эффективное напряжение; ϵ_1 — упругая деформация; ϵ_p — деформация разрушения; ϵ_3 — эффективная деформация; A_p — работа разрушения.

выборки, а также среднеарифметическую величину показателей, их среднеквадратическое отклонение, коэффициент вариации и номера кривых, у которых величина данной характеристики наиболее близка к среднему значению (табл. 1).

Изменения показателей, наблюдаемые в процессе испытания каждого образца, оформляют в виде таблиц (табл. 2), с помощью которых можно оценить кинетику процесса деформирования и разрушения материала.

Серьезную проблему представляет выбор кривой «— є, наилучшим образом описывающей характер деформирования данного образца. Наша программа дает возможность выбрать любой из следующих вариантов.

1. За среднюю принимают кривую, имеющую наиболее близкий к среднему показатель разрушающего усилия [8] или любой другой показатель, хотя остальные ее показатели могут существенно отличаться от средних (табл. 2).

2. Используя уравнение типичного тела в качестве модели деформирования и задаваясь средними расчетными величинами E_1 , E_2 и *n*, вычисляют координаты (σ_i , ε_i) всех точек расчетной кривой и оценивают точность совпадения ее характеристик со средними значениями (табл. 3). Ограничением применимости данного подхода является то, что не всегда указанная модель удовлетворительно описывает характер деформирования целлюлозного материала.

3. Среднюю кривую рассчитывают по методике Меридита [6]. После испытания заданного числа образцов отбирают несколько кривых, у

Таблица

Математическая обработка экспериментальной кривой № 5 (толшина образца 101.3 мкм)

	(Tomania oopasta Torio man)							
Но- мер точки на кри- вой	Р _т , Н	E	σ _τ , ΜΠα	Е _{о.д} , МПа	Е _τ , МПа	А _т , мДж	<i>n</i> , c	
2 3 4 5 6 7 8 9 10 11 12	19,62 31,39 43,16 51,01 58,86 61,75 70,63 76,52 80,44 84,37 88,29	0,002 0,004 0,006 0,010 0,012 0,014 0,016 0,018 0,020 0,022	12,91 20,65 28,40 33,56 38,72 12,60 46,47 50,34 52,92 55,50 58,09	6453 5163 4732 4195 3872 3519 3319 3146 2940 2775 2640	6453 3872 2581 2581 1936 1936 1936 1290 1290 1290	1,9 7,0 14,5 23,9 34,9 17,2 60,8 75,5 91,2 107,7 124,9	0,00 7,92 8,24 7,46 7,53 7,33 7,35 7,47 7,27 7,15 7,07	
13 14	92,21 96.14	0,024 0.026	$60,67 \\ 63.25$	2527 2432	1290 1290	143,0 161.8	7,02 6,98	
15	100,06	0,028	65,83	2351	1290	181,4	6,96	
10	103,99	0,030	70,99	2280	1290	201,8	6,94 6,93	
18	111,83	0,034	13,51	2104	1290	240,0	0,92	

Примечание. P_{τ} — текущее усилие; ε_{τ} — текущая деформация; σ_{τ} — текущее напряжение; $E_{0, R}$ — модуль общей деформации (секущий модуль упругости); E_{τ} — текущий модуль упругости, соответствующий выбранной точке на кривой; A_{τ} — текущая работа деформирования; n — время релаксации напряжения.

Таблица З

Усредненная кривая, рассчитанная по уравнению типичного тела $(E_1 = 6390 \text{ МПа}; E_2 = 1310 \text{ МПа}; n = 7,4 c;$ толщина образца 100,2 мкм)

Но- мер точки на кри- вой	<i>P</i> _τ , Η	ε _τ	σ _τ , ΜΠа	Е _{о. д} . МПа	<i>Е</i> _τ . МПа	<i>А.</i> _т , мДж	ТЕА, мДж
2	16,98	0,0020	11,29	5646	5646	1,7	1,13
3	30,34	0,0040	20,18	5044	4443	6,4	4,28
4	41,08	0,0060	27,33	4554	3573	13,5	9,03
5	49,94	0,0080	33,22	4152	2945	22,6	15,08
· ,6	57,44	0,0100	38,20	3820	2492	33,4	22,22
7	63,94	0,0120	42,53	3544	2164	45,5	30,30
8	69,74	0,0140	46.38	3313	1927	58,9	39,19
9	75,02	0,0160	49,90	3118	1755	73,3	48,82
.10	79,93	0,0180	53,16	2953	1632	88,8	59,12
11	84,56	0,0200	56,24	2812	1542	105,3	70,06
12	89,01	0,0220	59.20	2691	1478	122,6	81,61
13	93,31	0,0240	62,06	2586	1431	140,9	93,73
14	97,52	0,0260	64,86	2494	1397	160,0	106,42
15 ·	101,65	0,0280	67,61	2414	1373	179,9	119,67
16	105,72	0,0300	70,32	2343	1355	200,6	133,46
. 17	109,76	0,0320	73,00	2281	1343	222,2	147,80
··· • •.		0,0020	10,00	2201	10.0	000,0	,

Примечание. Здесь и в табл. 4 ТЕА — энергия, поглощаемая при растяжении (определяется как площадь под кривой $\sigma - \epsilon$).

которых величины разрушающего усилия P_p , деформации разрушения ε_p и работы разрушения A_p наиболее близки к средним значениям. По

Рис. 2. Кривые зависимости с — є для серии образцов параллельных испытаний: 1, 2 — экспериментальные кривые, имеющие максимальное отклонение от усредненных; 3 — усредняющая кривая, рассчитанная при использовании в качестве модели деформирования уравнения типичного тела; 4 — усредняющая кривая, рассчитанная по методике Меридита

Рис. 1. Первоначальная обработ-

ка кривой усилие - удлинение по

Меридиту [6]

Таблица 4

Hoмер Ε_τ, Е_{О.Д}, TEA. точки σ_τ, ΜΠα *А*_τ, мДж *P*_τ, Η ε_τ мДж на MПа МΠа кри вой $\frac{2}{3}$ 4,85 6223 6223 3,23 0,0032 30,13 20,04 0,0064 11,60 48,09 31,98 4966 3709 17,44 0.0097 4193 2647 34,99 23,274 5 60.91 40.512032 70.74 0,0129 47,05 3653 56.1937,37 6 7 80,29 78,96 0,0161 52.523261 1696 53,40 0,0193 56,92 2946 1366 106,78 71,02 85,57 8 2710 1295 135.34 90.02 91,84 0.022561,09 9 65,26 2533 1295 165,93 98.11 0,0258 110,36 10 0,0290 1295 198,53 132,04 104,39 69,43 2395 110,66 0,0322 73,60 2285 1295 233,15 155,07 11

Усредненная кривая, рассчитанная по методике Меридита

тим кривым фиксируют нагрузки, соответствующие 10...100 % разывного удлинения образца Δl_p и выражают в процентах от P_p (рис. 1). Таким образом получают ряд точек для построения кривой зависимости нагрузки (% от разрывной) от удлинения (% от разрывюго). С помощью средних значений P_p и ε_p проценты пересчитывают з абсолютные величины P_i и ε_i , по этим данным строят типичную кризую $\sigma - \varepsilon$ и производят все необходимые вычисления (табл. 4).

Вывод на экран графиков зависимости $\sigma - \varepsilon$ для всех параллельных испытаний с предоставлением возможности распечатки позволяет эценить разброс хода экспериментальных кривых и выбрать усредняющую кривую, отражающую характер деформирования для серии образцов (рис. 2).

Таким образом, используя математическую обработку результатов испытаний на растяжение с получением диаграммы σ— є, можно дать

Я. В. Казаков, В. И. Комаров

2

всестороннюю оценку изменения исследуемых характеристик целлюлозного волокнистого материала как в процессе деформирования, так и в точке разрушения. Такой подход позволяет найти критерии оценки качества материала при работе в реальных условиях и при разработке новых видов продукции с заданными свойствами.

СПИСОК ЛИТЕРАТУРЫ

[1]. Бартенев Г. М. Прочность и механизм разрушения полимеров.— М.: Хи-мия, 1984.— 280 с. [2]. Ван Флек Л. Теоретическое и прикладное материаловеде-ние.— М.: Атомиздат; 1975.— 472 с. [3]. Комаров В. И. Анализ зависимости на-пряжение — деформация при испытании на растяжение целлюлозно-бумажных мате-риалов // Лесн. журн.— 1993.— № 2—3.— С. 123—131.— (Изв. высш. учеб. заведе-ний). [4]. Комаров В. И., Казаков Я. В. Определение времени релаксации напряжения целлюлозно-бумажных материалов из статических кривых о -- є при депряжения целлюлозно-оумажных материалов из статических кривых **б** — є при де-формировании и нагружении с постоянной скоростью // Лесн. журн.— 1993.— № 5—6. С. 130—133.— (Изв. Высш., учеб. заведений). [5]. Комаров В. И., Хаба-ров Ю. Г. Обработка индикаторных диаграмм, полученных испытанием на растя-жение, при помощи ЭВМ // Химия и технология целлюлозы: Межвуз. сб. науч. тр.— Л.: РИО ЛТА, 1979.— Вып. 6.— С. 94—96. [6]. Мортон В. Е., Херл Д. В. Меха-нические свойства текстильных волокон.— М.: Легкая индустрия, 1971.—278 с. [7]. Фудзи Т., Дзако М. Механика разрушения композиционных материалов.— М.: Мир, 1982.— 232 с. [8]. Хабаров Ю. Г., Комаров В. И. Оценка последователь-ности разрушения и сладолозных волокиистых материалов. // Бум. пром.сть — 1986. ности разрушения целлюлозных волокнистых материалов // Бум. пром-сть. 1986.-№ 6.-C. 16-17.

Поступила 30 марта 1995 г.