

УДК 674.817-41:667.62.633

С.С. Глазков, Е.В. Снычева, В.С. Мурзин

Глазков Сергей Сергеевич родился в 1961 г., окончил Воронежский технологический институт, кандидат технических наук, доцент кафедры химии Воронежской государственной лесотехнической академии. Имеет более 50 печатных работ в области древеснополимерных композиций.

Снычева Елена Васильевна родилась в 1979 г., окончила в 2002 г. Воронежский государственный университет. Аспирант кафедры химии Воронежской государственной лесотехнической академии. Имеет 2 печатные работы в области органической химии.

Мурзин Виктор Сергеевич родился в 1937 г., окончил в 1959 г. Воронежский инженерно-строительный институт, кандидат технических наук, профессор, первый проректор Воронежской государственной лесотехнической академии. Имеет более 80 научных трудов в области технологии клееных материалов и плит.

СТАБИЛИЗАЦИЯ ПОКАЗАТЕЛЕЙ КАРБАМИДО-ФОРМАЛЬДЕГИДНЫХ СМОЛ СПИРТАМИ

Предложено для предотвращения изменения функционального состава карбамидоформальдегидных смол в процессе хранения добавлять глицерин, что снижает токсичность смолы и склеенных ею готовых изделий, изменяет скорость отверждения смолы, ее физико-механические показатели; приведен предполагаемый механизм модифицирующего влияния глицерина.

Ключевые слова: карбамидоформальдегидная смола, глицерин, модификация, полуацеталь, ацеталь, стабилизация, токсичность, отверждение, прочностные характеристики.

Карбамидоформальдегидные смолы (КФС) применяют в производстве мебели, фанеры, древесных пластиков и др. Продукция на основе данного полимера имеет высокие физико-механические показатели [1]. Однако, несмотря на положительные свойства, КФС имеют ряд серьезных недостатков, одним из которых является высокая токсичность, определяемая в основном повышенным содержанием свободного формальдегида [7].

Предлагаемая ранее модификация КФС спиртами как на стадии синтеза (этиленгликоль) [2], так и готовой смолы [3], приводит к некоторому повышению физико-механических показателей смолы, но сопровождается увеличением остаточного формальдегида в отвержденной смоле. Установлено [4], что в процессе хранения смолы происходит изменение ее функционального состава, которое влияет на срок хранения и способствует снижению физико-механических и экологических показателей.

В настоящей работе приведены результаты сравнительных исследований КФС, модифицированной одноатомными спиртами: *н*-бутанолом и этанолом. Для расширения диапазона соединений-модификаторов КФС предложено использовать глицерин, который по кислотности превышает ранее использовавшиеся спирты [5]. Рассмотрен механизм модифицирующего влияния трехатомного спирта.

Выбор спиртов в качестве модификаторов основан на способности свободного формальдегида вступать с ними в химическую реакцию с образованием полуацеталей и ацеталей, что способствует стабилизации КФС и удлиняет срок ее хранения без существенного снижения физико-химических свойств, а также уменьшает токсичность. Спирты являются слабыми нуклеофилами, поэтому реакция идет только с очень активными карбонильными соединениями (формальдегид) или с активированными вследствие кислотного катализа [5].

Как базовый вариант для модификации готовых карбамидных связующих была использована КФС марки КФ-Ж (контроль) с характеристиками, приведенными в табл. 1. Показатели образов определены по ГОСТ 14231–88. Часть промежуточных результатов не внесена в таблицу для удобства представления общей картины эксперимента.

Для смолы марки КФ-Ж, содержащей рассмотренные модификаторы, за исключением этанола, в процессе хранения отмечено менее выраженное снижение концентрации свободного формальдегида и продолжительности желатинизации. Вероятно, спирты химически обратимо связывают формальдегид в полуацетальную форму, что снижает токсичность полимера и увеличивает срок хранения КФС, так как замедляется процесс вялотекущей поликонденсации между метилольными производными карбамида и формальдегидом (поликонденсация – причина изменения функционального состава смолы в процессе хранения).

Для немодифицированной смолы (контроль) наблюдается снижение содержания свободного формальдегида до 50 %, а вследствие этого – увеличение условной вязкости и уменьшение продолжительности желатинизации, что сокращает срок хранения.

Таблица 1 Физико-химические свойства КФС

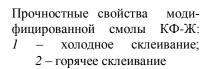
Показатель, зафиксированный	Значение показателя для КФС								
через время, сут.	немодифициро-	модифицированной							
	ванной (КФ-Ж)	глицерином н-буганолом		этанолом					
Содержание свободного фор-									
мальдегида, %									
0	1,1	_	_	_					
8	_	1,03	0,90	1,00					
24	_	1,10	0,71	1,00					
60	0,5	0,97	0,71	0,65					
Содержание метинольных	•								
групп, %									
0	12,3	_	_	_					
8	_	13,9	15,5	13,5					
24	_	9,7	10,1	10,4					
60	15,4	7,4	13,7	13,2					
Условная вязкость по ВЗ-4, с									
0	45	_	_	_					
8	_	44	39	41					
24	_	48	42	46					
60	120	58	59	60					
Продолжительность желати-									
низации при $t = 100$ °C, с									
0	70,0	_	_	_					
8	_	68,4	68,5	70,7					
24	_	63,5	63,5	63,4					
60	55,4	61,1	56,5	61,6					
Устойчивость к разбавлению									
водой (объемное отношение)									
0	1:5	_	_	_					
8	_	1:4	1:4	1:4					
24	_	1:4	1:4	1:5					
60	1:5	1:4	1:4	1:3					

Примечание. Концентрация модификатора в связующем 1%.

Исследован процесс холодного отверждения модифицированной глицерином КФС в присутствии отвердителя (щавелевая кислота). Для этого использовали 10 %-й водный раствор кислоты, который вводили в состав смолы в количестве 2,0 % в пересчете на сухую щавелевую кислоту (табл. 2). Смолу отверждали в ваймах размером $2 \times 2 \times 3$ см. Образцы отвержденной смолы после выдержки в течение трех суток при комнатной температуре испытывали на когезию методом определения прочности при сжатии и на содержание остаточного формальдегида методом WKI (баночный метод) (табл. 2).

Таблица 2

r · · · · · · · · · · · · · · · · · · ·								
Показатель	Значение показателя при концентрации глицерина, %							
	0,0	0,1	0,2	0,5	1,0	2,0		
Продолжительность отверждения, с	2400	300	1200	600	2400	3600		
Предел прочности при сжатии, МПа	19,2	31,0	25,0	22,0	9,4	7,5		
Содержание свободного формаль-								
дегида, мг/100 г образца	21,5	8,7	9,3	11,5	19,7	26,3		


Примечание. рН всех составов не ниже 4.

Из данных табл. 2 следует, что при концентрациях глицерина и щавелевой кислоты 2,0 % продолжительность отверждения значительно выше, чем у контроля — чистой смолы. Для этой же концентрации глицерина и концентрации щавелевой кислоты 0,7 ... 7,0 % установлено резкое снижение когезионной прочности смолы (соответственно с 7,1 до 3,9 МПа).

Изучены отверждение смолы и ее когезионная прочность в присутствии глицерина (концентрация до 2,0 %). Как видно из табл. 2, для невысоких концентраций глицерина (0,1 % ... 0,5 %) предел прочности при сжатии имеет значение от 22,0 до 31,1 МПа, что превышает этот показатель для контрольных образцов смолы на 20 ... 40 %. Можно предположить, что при таких концентрациях глицерина в смоле образуется неустойчивый полуацеталь. Данный продукт, являясь нестабильным соединением, разлагается на исходные компоненты, порциями восвобождая формальдегид, сшивающий макроцепи смолы при поликонденсационном процессе отверждения. Вероятно при добавлении в КФ-Ж избыточного по стехиометрии количества спирта (1,5 ... 2,0 %) образуется ацеталь, который, являясь химически устойчивым, не восвобождает формальдегид, требующийся для отверждения смолы.

Положительный эффект от введения спирта при отверждении смолы, выраженный снижением продолжительности процесс отверждения, заключается в том, что глицерин как вещество гидрофильного характера, вероятно, концентрирует воду, выделяющуюся при поликонденсации. И как следствие этого — ускорение поликонденсационного процесса, т.е. значительное снижение продолжительности времени отверждения смолы для указанного выше интервала концентраций глицерина (табл. 2) в условиях холодного отверждения. Глицерин, являясь по агрегатному состоянию жидкостью, обеспечивает более высокую сегментальную подвижность растущих макромолекул сетчатого полимера [6].

С учетом отмеченной тенденции был исследован процесс склеивания древесины в условиях холодного и горячего отверждения модифицированной смолы. Для эксперимента использовали дубовые рейки размером $7\times20\times300$ мм и влажностью 7 ... 8 %. Щавелевую кислоту (10 %-й раствор) вводили в количестве 1% от массы смолы в пересчете на сухую щавелевую кислоту, расход смолы -2.0 г/см². Склеиваемые рейки зажимали в струбци-

нах и выдерживали под давлением 5 кг/см² в течение суток, затем их освобождали от зажимов и выдерживали при комнатной температуре еще трое суток. Горячее склеивание образцов проводили в прессе для пластических масс марки Д 2430Б с размерами плит 350×390 мм ($t=130\,^{\circ}$ C, $P=5\,$ кг/см³, $\tau=10\,$ мин) После чего вырезали стандартные образцы для испытания предела прочности при сдвиге.

Результаты исследования прочностных показателей (предел прочности при сдвиге) образцов, полученных в условиях холодного (кривая I) и высокотемпературного (2) склеивания при различной концентрации глицерина, приведены на рисунке.

Анализ результатов испытаний показал, что использование глицерина в качестве модификатора имеет свои особенности в условиях холодного и горячего отверждения смолы КФ-Ж. Для холодного отверждения рекомендуется применять глицерин концентрацией $0,1\ldots0,5$ %, в случае горячего отверждения его концентрацию можно повысить до $1,0\ldots1,5$ %.

Высокое содержание в готовых изделиях остаточного формальдегида, который раздражающе действует на слизистые человека, резко сокращает область их применения и практически исключает использование для жилых помещений. После отверждения модифицированной глицерином смолы остаточный формальдегид, вероятно, связывается с избытком (по стехиометрии) глицерина и образует устойчивый ацеталь, что уменьшает токсичность изделий, склеенных КФ-Ж. При этом содержание остаточного формальдегида в древесных клеенных изделиях составляет ниже 10 мг/100 г, что соответствует классу эмиссии Е-1.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Азаров В.И.* Технология связующих и полимерных материалов / В.И. Азаров, В.Е. Цветков. М.: Лесн. пром-сть, 1985. 216 с.
- 2. *Бурындин В.Г.* Экологически безопасные древесные композиционные материалы с карбамидными связующими: автореф. дис. ... докт. техн. наук / В.Г. Бурындин. Екатеринбург, 2000. 33 с.
- 3. Глазков С.С. Модификация связующих в производстве ДСтП / С.С. Глазков, В.С. Болдырев // Деревообр. пром-сть. -1996. -№ 4. C. 24 25.

- 4. Γ лухих В.В. Изменение функционального состава и свойств карбамидоформальдегидных смол при хранении / В.В. Глухих [и др.] // Лесн. журн. − 1996. − № 4-5. − С. 153–159. − (Изв. высш. учеб. заведений).
- 5. *Нейланд О.Я.* Органическая химия: учеб. для хим. спец. вузов / О.Я. Нейланд. М.: Высш. шк., 1990. 751 с.
- 6. *Москвитин Н.И.* Склеивание полимеров / Н.И. Москвитин. М: Лесн. пром-сть, 1968. 304 с.
- 7. *Фуки В.К.* Выделение формальдегида в процессе отверждения карбами-доформальдегидных олигомеров / В.К. Фуки [и др.] // Технология древесных плит и пластиков: межвуз. сб. научн. тр. Свердловск, 1990. С. 12–18.

Воронежская государственная лесотехническая академия

Поступила 2.06.05

S.S. Glaskov, E.V. Snycheva, V.S. Mursin

Indices Stabilization of Carbamide-formaldehyde Resins by Spirits

It is suggested to add glycerin for preventing functional composition changes in carbamide-formaldehyde resins in the process of storage that brings down the toxicity of resin and finished products laminated by it, changes the rate of resin hardening and its physico-mechanical characteristics. The proposed mechanism of the glycerin modifying influence is provided.