древесины - Деп. рук. в ВИНИПИЭИлеспром № 912 - лб, 1982. - 9 с. [6]. Перелыгин Л.Н. Строение древесины - М.: Гослесбумиздат, 1954.- 200 с. [7]. Huber Br., Werz W. Uber die bedeutung des hoftupfelverschlusses fur die axiale wasserleitfahigkeit von nadelholzern. - Planta, Bd. 51.- 1958. - S. 645-672. [8]. Fengel D. Ultrastruktural changes during aging of wood cells // Wood Science and Technology. - 1970. - Vol. 4. - P. 176-188.

Поступила 1 июня 1998 г.

УДК 674.023

Е.Б. РЮМИНА, С.А. КАБАКОВ

Архангельский государственный технический университет

Рюмина Елена Борисовна родилась в 1954 г., окончила в 1976 г. Архангельский лесотехнический институт, кандидат технических наук, доцент кафедры инженерной геологии, оснований и фундаментов Архангельского государственного технического университета. Имеет 43 печатных труда в области деревянных конструкций.

Кабаков Сергей Александрович родился в 1946 г., окончил в 1968 г. Архангельский лесотехнический институт, кандидат технических наук, академик Российской академии проблем качества. Имеет более 90 печатных трудов в области качества пилопродукции.

ВЫХОД ЭЛЕМЕНТОВ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ ИЗ СОВОКУПНОСТИ НЕОБРАБОТАННЫХ ПИЛОМАТЕРИАЛОВ

Приведены данные посортного выхода элементов деревянных конструкций SS и GS согласно BS 4978:1988 «Сорта пиломатериалов хвойных пород для строительных целей» из совокупности необработанных пиломатериалов, а также их распределение по длинам.

The data on the yield of elements of wooden constructions SS and GS according to BS 4978: 1988 «Grades of Softwood Sawn Timber for Construction Purposes» out of the collection of rough sawn timber is given as well as their breakdown according to lengths.

Лесопиление в России традиционно ориентировано на изготовление пилопродукции многофункционального назначения, подлежащей дообработке у потребителя. Однако на зарубежных рынках уже более четверти века большим спросом пользуются калиброванные пиломатериалы сечением по BS 4471:1987 («Размеры пиленых и калиброванных пиломатериалов»), рассортированные по прочностным показателям согласно Британскому стандарту BS 4978:1988 («Сорта хвойных пиломатериалов для строительных целей»), по сути – деревянные конструкционные элементы.

Цель работы – оценить возможность изготовления из отечественной древесины конструкционных элементов регламентируемых сортов и размеров по BS 4978:1988.

Для этого выполнено сравнение объемного выхода из совокупности необработанных пиломатериалов конструкционных элементов по ВЅ 4978:1988 и пиломатериалов по ГОСТ 26002–83Э «Пиломатериалы хвойных пород северной сортировки, поставляемые на экспорт».

Объемный выход определяли по результатам опытных сортировок одной и той же партии необработанных пиломатериалов сечением 44×100 мм, которое наиболее часто используется для несущих строительных конструкций (количество – 760 шт., объем – 18,41 м³).

По ГОСТ 26002–83Э пиломатериалы сортировали на бессортные, 4-й и 5-й сорта. Из пиломатериалов, не соответствующих требованиям этого стандарта, по ГОСТ 8486–86Е «Пиломатериалы внутреннего рынка» выделяли доски 0–4-го сортов и древесный брак.

По BS 4978:1988 пиломатериалы сортировали на два визуальных класса прочности (SS и GS), а также «отпад», из которых выделяли пиломатериалы 4-го и 5-го сортов по ГОСТ 26002–83Э.

Пиломатериалы из плотного транспортного пакета поштучно перекладывали на подстопное место, определяя при этом их длину с точностью до 0,1 м. Далее с учетом условной оторцовки оценивали сорт пиломатериалов по ГОСТ 26002–83Э и класс прочности конструкционных элементов по BS 4978:1988. При этом фиксировали порок, при котором конструкционные элементы не могли быть приняты классом прочности SS и переходили в GS.

При обработке результатов рассчитывали выход пиломатериалов каждого сорта по ГОСТ 26002–83Э. Для этого определяли объем неоторцованных пиломатериалов и их объем после условной оторцовки. Далее вычисляли общий выход пиломатериалов по ГОСТ 26002–83Э и объем попутной продукции и отрезков. Аналогично устанавливали выход конструкционных элементов по BS 4978:1988. Результаты опытных сортировок приведены в табл. 1.

Таблица 1 Объемный выход конструкционных элементов из совокупности выпиленных пиломатериалов

Доски	Общий объем	Выход элементов по BS 4978:1988		Отпад	Отрезки
		SS	GS		
Совокупность выпиленных пиломатериалов	18,4/100	7,76/42,2	5,01/27,2	2,8/15,2	2,84/15,4
Рассортированные по ГОСТ 26002–83Э:					
бессортные	1,94/10,5	1,54/79,4	0,38/19,6	_	0,02/1,0
4-й сорт	9,37/50,9	5,45/58,2	3,42/36,5	0,35/3,7	0,15/1,6
5-й сорт	3,47/18,8	0,77/22,2	1,21/34,9	1,27/36,6	0,22/6,3
Рассортированные по ГОСТ 8486–86E:					
0–3-й сорт	0,05/0,3	_	_	0,05/100	_
4-й сорт	0,28/1,5	_	_	0,28/100	_
Древесный брак	0,85/4,6	_	_	0,85/100	_
Отрезки	2,45/13,4	_	_	_	2,45/100

Примечание. Здесь и далее, в табл. 2–4, в числителе приведены данные в кубометрах, в знаменателе – в процентах.

Таблица 2 Распределение по длинам выпиленных пиломатериалов, поступивших на сортировку

Фактическая длина, м	Объем пиломатериалов		
3,75	0,099/0,54		
4,00	1,936/10,51		
4,30	0,530/2,88		
4,60	0,344/1,87		
4,90	0,431/2,34		
5,20	2,013/10,94		
5,50	0,871/4,73		
5,80	0,995/5,41		
6,10	10,682/58,03		
6,40	0,507/2,75		
Итого	18,408/100,00		

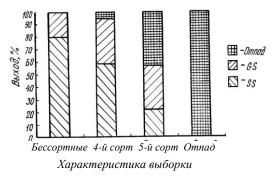
В ходе исследований установлено распределение по длинам совокупности выпиленных пиломатериалов, поступивших на сортировку (табл. 2), и пиломатериалов, рассортированных по ГОСТ 26002–83Э (табл. 3), а также конструкционных элементов по BS 4978:1988 (табл. 4).

На основании проведенных исследований можно сделать следующие выводы.

1. Совокупность выпиленных пиломатериалов, предназначенных для сортировки, имеет следующее распределение по длинам: 58 % длиной 6,1 м,

Таблица 3 Распределение по длинам пиломатериалов, рассортированных по ГОСТ 26002—83Э

Длина пило- материалов, м	Бессортные	4-й сорт	5-й сорт	Для внутрен- него рынка	Отпад
2,7	0,012/0,6	0,024/0,3	_	_	_
3,0	0,013/0,7	0,145/1,6	0,066/1,9	_	0,053/1,9
3,3	0,058/3,0	0,450/4,8	0,131/3,8	_	0,189/6,8
3,6	0,127/6,6	0,602/6,4	0,174/5,0	_	0,158/5,6
3,9	0,103/5,3	0,704/7,5	0,137/3,9	0,069/20,8	0,189/6,7
4,2	0,148/7,6	0,610/6,5	0,166/4,8	0,018/6,42	0,111/4,0
4,5	0,119/6,1	0,693/7,1	0,158/4,6	_	0,158/5,6
4,8	0,169/8,7	1,056/11,3	0,422/12,2	0,021/6,3	0,296/10,6
5,1	0,381/19,6	0,853/9,1	0,516/14,9	0,045/13,6	0,404/14,4
5,4	0,309/16,0	1,449/15,4	0,404/11,6	_	0,190/6,8
5,7	0,477/24,6	2,182/23,3	1,053/30,4	0,100/30,1	0,552/19,7
6,0	0,026/1,3	0,607/6,4	0,238/6,8	0,079/23,8	0,502/17,9
Итого	1,942	9,375	3,465	0,332	2,802


Таблица Распределение по длинам конструкционных элементов по BS 4678:1988

Длина	Выход элементов из пиломатериалов по ГОСТ 26002–83Э					
элемента,	Бессортные		4-й сорт		5-й сорт	
M	SS	GS*	SS	GS**	SS	GS***
2,7	0,012/0,8	_	0,083/1,5	0,012/0,4	0,095/12,3	_
3,0	0,013/0,8	_	0,092/1,7	0,079/2,3	0,026/3,4	0,039/3,2
3,3	0,058/3,7	_	0,319/5,9	0,012/3,4	0,730/9,4	0,030/2,5
3,6	0,127/8,2	0,048/12,5	0,491/9,0	0,221/6,5	0,111/14,4	0,095/7,9
3,9	0,069/4,4	0,017/4,4	0,309/5,7	0,343/10,0	0,051/6,6	0,086/7,1
4,2	0,166/10,8	0,040/10,4	0,425/7,8	0,277/8,1	0,092/11,9	0,074/6,1
4,5	0,040/2,6	0,042/10,9	0,356/6,5	0,198/5,8	0,059/7,6	0,060/5,1
4,8	0,190/12,4	0,890/23,4	0,655/12,0	0,275/8,0	0,063/8,2	0,190/15,7
5,1	0,224/14,6	0,048/12,5	0,314/5,8	0,404/11,8	_	0,090/7,4
5,4	0,238/15,5	0,100/26,0	0,832/15,2	0,428/12,5	0,024/3,1	0,119/9,8
5,7	0,376/24,4	_	1,229/22,6	0,853/24,9	0,100/12,9	0,426/35,2
6,0	0,026/1,7	_	0,343/6,3	0,211/6,1	0,079/10,2	_
Итого	1,539	0,384	5,448	3,418	0,773	1,209

^{*} Из них элементы с обзолом составляют 0,020 м³, с сучками – 0,842 м³, с прочими пороками – 0,022 м³.

^{**} Из них элементы с обзолом составляют 0,740 м 3 , с сучками – 2,547 м 3 , с прочими пороками – 0,131 м 3 .

^{***} Из них элементы с обзолом составляют 1,050 м 3 , с сучками – 0,128 м 3 , с прочими пороками – 0,031 м 3 .

Выход конструкционных элементов из досок по ГОСТ 26002–86Э

11 % длиной 5,2 и 4,0 м (далее примерно в равных долях следуют пиломатериалы других длин). Средняя длина неоторцованных пиломатериалов — 5,5 м. На основании этих данных могут быть получены распределения по длинам деревянных элементов конструкций с целью обеспечить выполнение конкретного контракта.

2. Совокупность выпиленных пиломатериалов, пред-

ставленная к сортировке в табл. 1, включала 11 % бессортных досок, 50 % досок 4-го сорта и 19 % досок 5-го сорта по ГОСТ 26002–83Э, 2 % досок по ГОСТ 8486–86Е, 18 % отрезков и древесного брака.

3. Для оценки объемного выхода конструкционных элементов выполнили расчет выхода групп SS и GS из пиломатериалов бессортных, 4-го и 5-го сортов по Γ OCT 26002–839 (см. рисунок). Из всей совокупности выпиленных пиломатериалов может быть получено 79 % конструкционных элементов группы SS и 20 % группы GS. За счет дополнительной оторцовки около 1 % объема пиломатериалов переведено в отрезки .

Из пиломатериалов 4-го сорта по ГОСТ 26002–83Э можно выпилить до 58 % конструкционных элементов группы SS и до 37 % группы GS. Около 5 % составляют отпад и отрезки.

4. Из выделенных в категорию отпад при сортировке по BS 4988:1988 соответственно 2 и 7 % пиломатериалов из всей совокупности, поступившей на сортировку, составляют доски 4-го и 5-го сортов по ГОСТ 26002–83Э, которые могут быть включены в контракт покупателем при поставке ему строительных элементов.

Следует иметь ввиду, что в данной работе предусматривался максимальный объемный выход деревянных конструкционных элементов по фактическим длинам с учетом минимальной оторцовки. Если в контракте потребуется поставка только элементов группы SS, то их выход можно увеличить за счет дополнительного поперечного раскроя элементов группы GS и досок категории отпад в среднем на 8,7 % из бессортных пиломатериалов, на 64 % из пиломатериалов 4-го сорта и на 49 % из пиломатериалов 5-го сорта. При этом объем отрезков из бессортных досок составит 6 %, из досок 4-го и 5-го сортов – по 10 %.