УДК 630*521.3

A.A. Baŭc

Сибирский государственный технологический университет

Вайс Андрей Андреевич родился в 1965 г., окончил в 1987 г. Сибирский технологический институт, кандидат сельскохозяйственных наук, доцент кафедры лесной таксации, лесоустройства и геодезии Сибирского государственного технического университета. Имеет более 190 печатных работ в области таксации растущего дерева и экологического образования. E-mail: vais6365@mail.ru



НОРМАТИВЫ ДЛЯ ОПРЕДЕЛЕНИЯ ЗАПАСОВ ВЫРУБЛЕННЫХ ДРЕВОСТОЕВ ПО ПНЯМ В УСЛОВИЯХ СИБИРИ

Изучена регрессионная связь диаметров на высоте 1,3 м и на высоте пня для основных лесообразующих пород Сибири. Данная зависимость позволяет определить по пням запасы вырубленных древостоев, в том числе при незаконных рубках.

Ключевые слова: незаконные рубки, нормативы определения запасов, лесообразующие породы Сибири.

В последние годы широкое распространение получили незаконные рубки. В связи с этим остро стал вопрос об определении запаса срубленной древесины для наложения адекватных штрафных санкций. Для этого необходимо установить связь диаметров на высоте пня и на высоте 1,3 м, чтобы вычислить толщину срубленных деревьев и в дальнейшем с помощью стандартных таксационных методов определить запас (см. рисунок).

Цепочка определения запаса вырубленного древостоя по пням

Кроме того, необходимость составления нормативов для перехода от диаметров на высоте пня к диаметрам на высоте 1,3 м обусловлена другими целями: восстановления таксационной характеристики древостоя, произраставшего до рубки; приобретения навыков в глазомерном определении процента запаса и полноты удаленного при рубке древостоя [6]; установления объемов хлыстов и среднего диаметра [7]; изучения комлевого сбега [1]; проектирования мероприятий по обработке почвы на вырубках, обоснования конструктивных параметров лесохозяйственных машин и орудий [2, 5]; учета пневого осмола [4].

Таблица 1

Порода	Место взятия моделей	Число моделей, шт.
Сосна обыкновенная (Pinus sylvetris L.)	Зиминский, Эхирит-Булагатский	1075
Лиственница сибирская (<i>Larix sibirica</i> Ldb.)	районы Иркутской области; Енисейский район Красноярского края Дзержинский, Пировский, Тасеевский, Бирилюсский районы Красноярского края; Эхирит-Булагатский,	820
Пихта сибирская (Abies sibirica Ldb.)	Ольхонский районы Иркутской области; Тоджинский, Туранский районы Республики Тыва Северо-Енисейский, Абанский, Казачинский, Канский, Курагинский, Большемуртинский, Козульский, Дзержинский районы Красноярско-	1816
Ель сибирская (Picea obovata Ldb.)	го края Абанский, Казачинский, Больше- муртинский, Тасеевский, Дзержин-	980
Береза пушистая (Betula pendula Roth.)	ский районы Красноярского края Асиновский район Томской области; Большемуртинский район Красноярского края; Эхирит-Булагатский район Иркутской об-	678
Осина (Populus tremula L.)	ласти Емельяновский, Большемуртинский районы Красноярского края; Карасукский, Красноозерский районы Новосибирской области	421

Объекты и методы исследования. Данная статья посвящена изучению вопроса, связанного с разработкой норматива для определения диаметров на высоте 1,3 м $(d_{1,3})$ по диаметрам на высоте пня (d_{π}) . Решались следующие задачи:

получение регрессионных моделей по лесорастительным районам; сравнение полученных результатов с данными других авторов.

В основу составленных таблиц положены данные обмеров учетных моделей основных лесообразующих пород Западной и Восточной Сибири, собранных по ступеням толщины в муниципальных районах [3] (табл. 1).

Экспериментальные исследования. На основе линейных моделей $(d_{1,3}=a+bd_{\rm II})$ получены местные нормативы (по муниципальным районам). Наибольшая разница в значениях по ступеням толщины у деревьев сосны составила 5, лиственницы -19, пихты -12, ели -5, березы -4, осины -4 см. С изменением диаметров пней различия в значениях диаметров на высоте 1,3 м увеличиваются. На различия по муниципальным районам значительное влияние оказывают таксационные особенности древостоев. При объединении материала и построении единых нормативов по лесным районам помимо более устойчивой зависимости получены данные, которые характеризуют укрупненный лесной массив (лесной район) [3]. Параметры уравнений по лесным районам приведены в табл. 2 (в скобках приведены значения $d_{\rm II}$).

Выровненные линии зависимости $d_{1,3} = a + bd_{\pi}$ из различных лесных районов Сибири и древесных пород были сопоставлены с данными других авторов.

Сосна. С возрастанием диаметров пней различие диаметров на высоте 1,3 м увеличивается. Самыми закомелистыми с учетом формы нижней части стволов оказались деревья в сосняках Среднесибирского подтаежно-лесостепного, затем Западно-Сибирского равнинно-таежного района. Для сосняков Иркутской области и европейской части России линии на графике фактически совпали. Наиболее полнодревесными являются деревья в сосняках бассейна р. Ангары.

Таблица 2

		Параметры модели		
Порода	Лесной район	Вид линейного	Основная	Коэффициент
		уравнения	ошибка, см	корреляции
Сосна	Среднесибирский	$d_{1,3} = 1,6 + 0,777d_{\Pi}$	3,4	0,960
обыкновенная	подтаежно-	(1292 см)		
	лесостепной			
	Западно-Сибирский	$d_{1,3} = 0.9 + 0.800d_{\Pi}$	2,6	0,962
	равнинно-таежный	(1288 см)		
Лиственница	Среднесибирский	$d_{1,3} = 2.7 + 0.675d_{\text{m}}$	4,8	0,941
сибирская	подтаежно-	(16140 см)		
	лесостепной			
	Алтае-Саянский	$d_{1,3} = -0.7 + 0.909d_{\Pi}$	3,1	0,976
	горнолесостепной	(2080 см)		
	Байкальский горный	$d_{1,3} = -1,2 + 0,750d_{\pi}$	1,1	0,984
		(1640 см)		
Пихта	Приангарский	$d_{1,3} = 2,7 + 0,717d_{\pi}$	2,7	0,958
сибирская		(872 см)		
	Среднесибирский	$d_{1,3} = 2.9 + 0.717d_{\Pi}$	3,1	0,933
	подтаежно-	(848 см)		
	лесостепной			
	Алтае-Саянский	$d_{1,3}=-2,7+0,909d_{\Pi}$	2,6	0,952
	горно-таежный	(1260 см)		
Ель сибирская	Приангарский	$d_{1,3} = 2,5 + 0,611d_{\Pi}$	2,5	0,948
		(868 см)		
	Среднесибирский	$d_{1,3} = 2,2 + 0,681d_{\pi}$	2,8	0,939
	подтаежно-	(1272 см)		
_	лесостепной			0.070
Береза	Среднесибирский	$d_{1,3} = -0.1 + 0.0750d_{\Pi}$	2,3	0,950
пушистая	подтаежно-	(860 см)		
	лесостепной			
	Западно-Сибирский	$d_{1,3} = 5.5 + 0.512d_{\pi}$	1,5	0,899
	равнинно-таежный	(1632 см)		
Осина	Западно-Сибирский	$d_{1,3} = -2,0 + 0,822d_{\pi}$	1,2	0,988
	подтаежно-	(652 см)		
	лесостепной			
	(колковые леса)			
	Среднесибирский	$d_{1,3} = -0.6 + 0.906d_{\Pi}$	1,1	0,991
	подтаежно-	(440 см)		
Приман	лесостепной	h avayyyy	 -05 P	

Примечание. Коэффициенты a и b значимы, так как $p_i < 0,05$. Все модели достоверны по критерию Фишера ($F_{\phi} > F_{\text{таб}}$).

Лиственница. Форма графиков аналогична сосне. Самыми закомелистыми были стволы лиственницы Среднесибирского подтаежно-лесостепного района, наиболее полнодревесными – деревья Алтае-Саянского горно-лесостепного района.

 Π их та. Линии на графике имели координату пересечения ($d_{\Pi}=28$ см, $d_{1,3}=22$ см). Самыми закомелистыми являлись деревья пихты Приангарского лесного района, наиболее полнодревесными — Алтае-Саянского горно-таежного лесного района.

Ель. Зависимости аналогичны сосне и лиственнице. Самыми закомелистыми оказались деревья ели Приангарского района, наиболее полнодревесными – стволы ели европейской части России.

Береза. Наблюдалась высокая степень совпадения сравниваемых линий.

Осина. Линии на графике расположились компактно. Самыми полнодревесными были стволы южно-таежной зоны Средней Сибири, произрастающие в смешанных естественных насаждениях. Деревья колковых лесов порослевого происхождения характеризовались максимальной сбежистостью. Остальные линии занимали промежуточное положение.

Выводы

- 1. В настоящее время нормативы для определения диаметров на высоте 1,3 м приобретают большое значение в связи с ростом числа незаконных рубок.
- 2. По отдельным муниципальным районам различия в диаметрах, рассчитанные по уравнению $d_{1,3} = a + bd_{1,1}$, могут быть значительными.
- 3. Целесообразно разрабатывать нормативы по укрупненным лесным районам.
- 4. Сравнительный анализ показал, что создание единых нормативов возможно только для маломерных и среднемерных стволов, для крупномерных деревьев необходимо использовать местные таблицы.
- 5. Применительно к лиственным породам (береза и осина) можно использовать единые нормативы в зависимости от происхождения (семенные, порослевые) и категории лесов (естественные, колковые).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гусев И.И.* Форма древесных стволов ели Европейского Севера и ее математическая модель // Лесная таксация и лесоустройство: межвуз. сб. науч. тр. по лесн. хоз-ву. Красноярск, 1975. С. 3–10.
- 2. *Марцинковский Л.А*. О зависимости между диаметрами деревьев лиственницы на высоте пня и на высоте груди // Лиственница: сб. науч. тр. Красноярск: СТИ. 1964. № 39. С. 15–17.
- 3. Об утверждении перечня лесорастительных зон и лесных районов Российской Федерации: Приказ МПР РФ от 28 марта 2007 г. № 68. 12 с.
- 4. Серяков А.П. Сырьевые ресурсы пневого осмола и их таксация на вырубках среднетаежных сосняков Иркутской области: автореф. дис. ... канд. с-х. наук: Красноярск, 1987. $20 \, \mathrm{c}$.
- 5. *Титаренко Ю.А.* Определение некоторых параметров пней на вырубках горных дубрав // Молодые ученые к юбилею ин-та: тр. науч. конф. М.: ВНИИлесоводства и механиз. лесн. хоз-ва. Деп. в ЦБНТИлесхоз от 23 дек. 1983 г. № 263 лх-83.

- 6. Третьяков Н.В., Горский П.В., Самойлович Г.Г. Справочник таксатора. Л.: Гослесбумиздат, 1952. 852 с.
- 7. Фалалеев Э.Н. Пихтовые леса Сибири и их комплексное использование. М.: Лесн. пром-сть, 1964. 189 с.

A.A. Vice

Siberian State Technological University

Standards for Determination of Cut Stands Resources according to Stumps in Condition of Siberia

The regression dependence of diameters at 1.3 m height and stump height for the main forest species is studied. The given dependence allows to determine the cut stands resources including the volume cut under illegal cutting.

Keywords: illegal cutting, standards for determining resources, forest species of Siberia.