Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Изменчивость элементного состава годичных колец хвойных пород

Версия для печати

В.Л. Гавриков, А.И. Фертиков, Р.А. Шарафутдинов, Е.А. Ваганов

Рубрика: Лесное хозяйство

Скачать статью (pdf, 1MB )

УДК

630*1

Аннотация

Распределение химических элементов в годичных кольцах деревьев несет важную информацию о многих биогеохимических процессах. Для надежной интерпретации этой информации необходимо обладать сведениями о степени вариации содержания химических элементов как на уровне всего вида, так и на уровне отдельных деревьев. Цель исследования – установить, какие химические элементы имеют устойчивый характер распределения в стволах ряда хвойных пород: ели сибирской (Picea obovata Ledeb.), сосны обыкновенной (Pinus sylvestris L.), лиственницы сибирской (Larix sibirica Ledeb.) и сосны сибирской (Pinus sibirica Du Tour). Данные для анализа получены на основе многолетнего опыта лесовыращивания. Экспериментальная площадка заложена в 1971–1972 гг. в окрестностях г. Красноярска институтом леса СО РАН . Перед высадкой саженцев почвенный фон механически выровнен, и таким образом для всех посадок созданы достаточно равные условия роста. Из трех нормально развивающихся деревьев каждой породы взяты керны диаметром 12 мм, проведен их анализ современными рентгенофлуоресцентными методами. Относительные величины содержания элементов (отсчеты) получены на мультисканере Itrax Multiscanner (COX Analytical Systems). Содержание элементов в годичных кольцах характеризовалось концентрацией и запасом элементов. Концентрация рассчитывалась как количество отсчетов на 1 мм2 площади кольца; запас – как количество отсчетов на всей площади кольца. Каждая из этих переменных описывалась параметрами линейного наклона в ряду календарных лет и стандартного отклонения. Кластерный анализ проводился в 4-мерном пространстве полученных параметров. Это позволило установить, группируются ли ряды распределения элементов из различных деревьев и различных пород. Три элемента (Ca, Co, P) демонстрируют высокую устойчивость параметров распределения независимо от породы дерева. Ряд других элементов (Mn, Pb, Cl, Cr, Ni, Sr, W) устойчиво группируется в зависимости от породы. Результаты исследования позволяют сконцентрироваться на изучении элементов, устойчиво распределяющихся в стволах хвойных.

Финансирование: Исследование было поддержано РФФИ , Правительством Красноярского края, Красноярским краевым фондом науки по проекту «Прогноз регионально-специфичных откликов бореальных лесов горных районов Сибири на глобальные изменения природной среды и траекторий эволюции ландшафтов для снижения экологических рисков и эффективного долгосрочного планирования деятельности различных отраслей экономики», номер гранта – 18-45-240001; и РФФИ по проекту: «Позднеголоценовая динамика бореальных лесов Азии на фоне меняющихся геохимических и климатических условий», номер гранта – 19-05-00091.

Сведения об авторах

В.Л. Гавриков1, д-р биол. наук, доц.; ResearcherID: M-5431-2013, ORCID: https://orcid.org/0000-0002-7816-0536
А.И. Фертиков1, аспирант; ResearcherID: AAX-2390-2020, ORCID: https://orcid.org/0000-0001-8958-795X
Р.А. Шарафутдинов1, канд. геогр. наук, доц.; ResearcherID: AAW-9994-2020, ORCID: https://orcid.org/0000-0002-0068-6458
Е.А. Ваганов1,2, д-р биол. наук, акад. РАН, проф.; ResearcherID: U-2379-2019, ORCID: https://orcid.org/0000-0001-9168-1152
1Сибирский федеральный университет, просп. Свободный, д. 79, г. Красноярск, Россия, 660041; e-mail: vgavrikov@sfu-kras.ru, fert_ov@mail.ru, ruslanate@mail.rueavaganov@hotmail.com
2Институт леса им. В.Н. Сукачева СО РАН , Академгородок, д. 50/28, г. Красноярск, Россия, 660036

Ключевые слова

химические элементы дерева, древесные кольца, временной тренд, кальций, свинец, сосна обыкновенная, ель сибирская, сосна сибирская, лиственница сибирская, кластерный анализ

Для цитирования

Гавриков В.Л., Фертиков А.И., Шарафутдинов Р.А., Ваганов Е.А. Изменчивость элементного состава годичных колец хвойных пород // Изв. вузов. Лесн. журн. 2021. № 6. С. 24–37. DOI: 10.37482/0536-1036-2021-6-24-37

Литература

1. Демаков Ю.П., Швецов С.М., Таланцев В.И., Калинин К.К. Динамика содержания зольных элементов в годичных слоях старовозрастных сосен, произрастающих в пойменных биотопах // Вестн. МарГТУ . Сер.: Лес. Экология. Природопользование. 2011. № 3. С. 25–35. Demakov Yu.P., Shvetsov S.M., Talantsev V.I., Kalinin K.K. Dynamics of Ash Constituents Content in Annual Rings of Old-Growth Pines Growing at the Floodplain Biotopes. Vestnik Mariyskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol’zovaniye [Bulletin of the Mari State Technical University. Series: Forest. Ecology. Nature Management], 2011, no. 3, pp. 25–35.

2. Казимиров Н.И., Волков А.Д., Зябченко С.С., Иванчиков А.А., Морозова Р.М. Обмен веществ и энергии в сосновых лесах Европейского Севера. Л.: Наука, 1977. 302 с. Kazimirov N.I., Volkov A.D., Zyabchenko S.S., Ivanchikov A.A., Morozova R.M. Exchange of Matter and Energy in Pine Forests of European North. Leningrad, Nauka Publ., 1977. 302 p.

3. Казимиров Н.И., Морозова Р.М. Биологический круговорот веществ в ельниках Карелии. Л.: Наука. 1973. 176 с. Kazimirov N.I., Morozova R.M. Biological Cycle of Substances in Spruce Forests of Karelia. Leningrad, Nauka Publ., 1973. 176 p.

4. Медведев И.Ф., Деревягин С.С., Козаченко М.А., Гусакова Н.Н. Оценка содержания химических элементов в древесине различных пород деревьев // Аграр. науч. журн. 2015. № 11. С. 12–14. Medvedev I.F., Derevyagin S.S., Kozachenko M.A., Gusakova N.N. Estimation of Chemical Elements Content in the Various Trees Wood. Agrarnyy nauchnyy zhurnal [The Agrarian Scientific Journal], 2015, no. 11, pp. 12–14.

5. Осипов А.Ф., Манова С.О., Бобкова К.С. Запасы и элементный состав растений напочвенного покрова в среднетаежных сосняках послепожарного происхождения (Республика Коми) // Растит. ресурсы. 2014. Т. 50, вып. 1. С. 3–11. Osipov A.F., Manova S.O., Bobkova K.S. Reserves and Element Composition in Ground Cover Plants in the Pine Forests of Post-Fire Origin (The Komi Republic). Rastitelnye Resursy, 2014, vol. 50, no. 1, pp. 3–11.

6. Хантемиров Р.М. Биоиндикация загрязнения среды в прошлом на основе анализа содержания химических элементов в годичных слоях древесины // Проблемы экологического мониторинга и моделирования экосистем. 1996. Т. 16. С. 153–164. Hantemirov R.M. Bioindication of Environmental Pollution History through Tree Rings Chemical Analysis. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 1996, vol. 16, pp. 153–164.

7. Четвериков А.Ф. Химический состав годичных слоев прироста деревьев и условия природной среды // Дендрохронология и дендроклиматология. Новосибирск: Наука, 1986. С. 126–130. Chetverikov A.F. Chemical Composition of Annual Layers of Tree Growth and Environmental Conditions. Dendrochronology and Dendroclimatology. Novosibirsk, Nauka Publ., 1986. pp. 126–130.

8. Шугалей Л.С., Семечкина М.Г., Яшихин Г.И., Дмитриенко В.К. Моделирование развития искусственных лесных биогеоценозов. Новосибирск: Наука, 1984. 152 с. Shugaley L.S., Semechkina M.G., Yashikhin G.I., Dmitriyenko V.K. Modeling the Development of Artificial Forest Biogeocenoses. Novosibirsk, Nauka Publ., 1984. 152 p.

9. Baes C.F., McLaughlin S.B. Trace Elements in Tree Rings: Evidence of Recent and Historical Air Pollution. Science, 1984, vol. 224, iss. 4648, pp. 494–497. DOI: https://doi.org/10.1126/science.224.4648.494

10. Berger T.W., Köllensperger G., Wimmer R. Plant-Soil Feedback in Spruce (Picea abies) and Mixed Spruce-Beech (Fagus sylvatica) Stands as Indicated by Dendrochemistry. Plant and Soil, 2004, vol. 264, no. 1-2, pp. 69–83. DOI: https://doi.org/10.1023/B:PLSO.0000047714.43253.25

11. Bindler R., Renberg I., Klaminder J., Emteryd O. Tree Rings as Pb Pollution Archives? A Comparison of 206Pb/207Pb Isotope Ratios in Pine and Other Environmental Media. Science of The Total Environment, 2004, vol. 319, iss. 1-3, pp. 173–183. DOI: https://doi.org/10.1016/S0048-9697(03)00397-8

12. Bondietti E.A., Baes III C.F., McLaughlin S.B. Radial Trends in Cation Ratios in Tree Rings as Indicators of the Impact of Atmospheric Deposition on Forests. Canadian Journal of Forest Research, 1989, vol. 19(5), pp. 586–594. DOI: https://doi.org/10.1139/x89-092

13. Goldberg E.L., Zolotarev K.B., Maksimovskaya V.V., Kondratyev V.I., Ovchinnikov D.V., Naurzbaev M.M. Correlations and Fixation of Some Elements in Tree Rings. Nuclear

14. Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, vol. 575, iss. 1-2, pp. 196–198. DOI: https://doi.org/10.1016/j.nima.2007.01.066

15. Hall G.S., Yamaguchi D.K., Rettberg T.M. Multielemental Analyses of Tree Rings by Inductively Coupled Plasma Mass Spectrometry. Journal of Radioanalytical and Nuclear Chemistry, 1990, vol. 146, pp. 255–265. DOI: https://doi.org/10.1007/BF02164193

16. Hevia A., Sánchez-Salguero R., Camarero J.J., Buras A., Sangüesa-Barreda G., Galván J.D., Gutiérrez E. Towards a Better Understanding of Long-Term Wood-Chemistry Variations in Old-Growth Forests: A Case Study on Ancient Pinus uncinata Trees from the Pyrenees. Science of The Total Environment, 2018, vol. 625, pp. 220–232. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.229

17. Hou S., Zheng N., Tang L., Ji X., Li Y., Hua X. Pollution Characteristics, Sources, and Health Risk Assessment of Human Exposure to Cu, Zn, Cd and Pb Pollution in Urban Street Dust across China between 2009 and 2018. Environment International, 2019, vol. 128, pp. 430–437. DOI: https://doi.org/10.1016/j.envint.2019.04.046

18. Liu Y., Ta W.Y., Bao T.Y., Yang Z.Y., Song H.M., Liu N., Wang W.P., Zhang H.Y., Zhang W., An Z.S. Trace Elements in Tree Rings and Their Environmental Effects: A Case Study in Xi’an City. Science in China Series D: Earth Sciences, 2009, vol. 52, pp. 504–510. DOI: https://doi.org/10.1007/s11430-009-0048-5

19. McClenahen J.R., Vimmerstedt J.P., Scherzer A.J. Elemental Concentrations in Tree Rings by PIXE: Statistical Variability, Mobility, and Effects of Altered Soil Chemistry. Canadian Journal of Forest Research, 1989, vol. 19, no. 7, pp. 880–888. DOI: https://doi.org/10.1139/x89-134

20. McLaughlin S.B., Wimmer R. Calcium Physiology and Terrestrial Ecosystem Processes. New Phytologist, 1999, vol. 142, iss. 3, pp. 373–417. DOI: https://doi.org/10.1046/j.1469-8137.1999.00420.x

21. Menyailo O.V., Hungate B.A., Zech W. Tree Species Mediated Soil Chemical Changes in a Siberian Artificial Afforestation Experiment. Plant and Soil, 2002, vol. 242, iss. 2, pp. 171–182. DOI: https://doi.org/10.1023/A:1016290802518

22. Padilla K.L., Anderson K.A. Trace Element Concentration in Tree-Rings Biomonitoring Centuries of Environmental Change. Chemosphere, 2002, vol. 49, iss. 6, pp. 575–585. DOI: https://doi.org/10.1016/S0045-6535(02)00402-2

23. Panyushkina I.P., Shishov V.V., Grachev A.M., Knorre A.A., Kirdyanov A.V., Leavitt S.W., Vaganov E.A., Chebykin E.P., Zhuchenko N.A., Hughes M.K. Trends in Elemental Concentrations of Tree Rings from the Siberian Arctic. Tree-Ring Research, 2016, vol. 72, no. 2, pp. 67–77. DOI: https://doi.org/10.3959/1536-1098-72.02.67

24. Prohaska T., Stadlbauer C., Wimmer R., Stingeder G., Latkoczy C., Hoffmann E., Stephanowitz H. Investigation of Element Variability in Tree Rings of Young Norway Spruce by Laser-Ablation-ICPMS. The Science of the Total Environment, 1998, vol. 219, iss. 1, pp. 29–39.

25. Schugalei L.S. The Siberian Afforestation Experiment: History, Methodology, and Problems. Ed. by D. Binkley, O. Menyailo. Tree Species Effects on Soils: Implications for Global Change. Springer, Dordrecht, 2005, pp. 257–268. DOI: https://doi.org/10.1007/1-4020-3447-4_15

26. Selin E., Standzenieks P., Boman J., Teeyasoontranont V. Multi-Element Analysis of Tree Rings by EDXRF Spectrometry. X-Ray Spectrometry, 1993, vol. 22, iss. 4, pp. 281–285. DOI: https://doi.org/10.1002/xrs.1300220420

27. Vaganov E.A., Grachev A.M., Shishov V.V., Panyushkina I.P., Leavitt S.W., Knorre A.A. Chebykin E.P., Menyailo O.V. Elemental Composition of Tree Rings: A New Perspective in Biogeochemistry. Doklady Biological Sciences, 2013, vol. 453, pp. 375–379. DOI: https://doi.org/10.1134/S0012496613060203

Ссылка на английскую версию:

Variability in Elemental Composition of Conifer Tree Rings

VARIABILITY IN ELEMENTAL COMPOSITION OF CONIFER TREE RINGS

Vladimir L. Gavrikov1, Doctor of Biology, Assoc. Prof.; ResearcherID: M-5431-2013, ORCID: https://orcid.org/0000-0002-7816-0536
Alexey I. Fertikov1, Postgraduate Student; ResearcherID: AAX-2390-2020, ORCID: https://orcid.org/0000-0001-8958-795X
Ruslan A. Sharafutdinov1, Candidate of Geography, Assoc. Prof.; ResearcherID: AAW-9994-2020, ORCID: https://orcid.org/0000-0002-0068-6458
Evgenii A. Vaganov1,2, Doctor of Biology, Academician of RAS, Prof.; ResearcherID: U-2379-2019, ORCID: https://orcid.org/0000-0001-9168-1152
1Siberian Federal University, prosp. Svobodnyy, 79, Krasnoyarsk, 660041, Russian Federation; e-mail: vgavrikov@sfu-kras.ru, fert_ov@mail.ru, ruslanate@mail.rueavaganov@hotmail.com
2Sukachev Institute of Forest SB RAS, Akademgorodok, 50/28, Krasnoyarsk, 660036,
Russian Federation

Abstract. Distribution of chemical elements in tree rings bears important information on various biogeochemical processes. In order to achieve a reliable interpretation of the information, it is necessary to know the degree of variation in the content of chemical elements both at the level of the entire species and at the level of individual trees. The research aims to determine which chemical elements have a stable distribution in the trunks of a number of conifers: Siberian spruce (Picea obovata Ledeb.), Scots pine (Pinus sylvestris L.), Siberian larch (Larix sibirica Ledeb.), and Siberian pine (Pinus sibirica Du Tour). The data for the analysis were obtained on the basis of the long-term experiment in forest growing. The experimental site was laid out in 1971–1972 in the vicinity of Krasnoyarsk by the staff of the Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences. Before planting the seedlings, the soil ground was mechanically levelled, and thus, sufficiently equal growth conditions were created for all plantings. Cores with a diameter of 12 mm were sampled from three normally developing trees of each species and analyzed using modern X-ray fluorescence methods. Content relative values of elements (counts) were obtained with the Itrax Multiscanner (COX Analytical Systems). The content of elements in the tree rings was characterized by the concentration and reserve of elements. Concentration was calculated as the number of counts per 1 mm2 of the ring area; reserve was calculated as the number of counts over the entire ring area. Each of these variables was defined by the parameters of linear slope in the calendar year series and the standard deviation. The cluster analysis was performed in the 4-dimensional space of the obtained parameters. This allowed determining whether the series of element distributions from different trees and species are grouped. Three elements (Ca, Co, and P) show high stability of distribution parameters in tree rings with no regard to tree species. A number of other elements (Mn, Pb, Cl, Cr, Ni, Sr, and W) are stably grouped depending on the species. The results of the research enable to focus on the study of the elements stably distributed in the conifer trunks.

For citation: Gavrikov V.L., Fertikov A.I., Sharafutdinov R.A., Vaganov E.A. Variability in Elemental Composition of Conifer Tree Rings. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 6, pp. 24–37. DOI: 10.37482/0536-1036-2021-6-24-37
Funding: The research was supported by the Russian Foundation for Basic Research (RFBR), the Government of Krasnoyarsk Krai and the Krasnoyarsk Regional Science Foundation within the project “Forecasting the Region-Specific Responses of Boreal Forests of Mountainous Areas of Siberia to Global Changes in the Natural Environment and Trajectories of Landscape Evolution for Reduction of Environmental Risks and Effective Long-term Planning of Various Economic Sectors”, grant No. 18-45-240001; and the RFBR within the project “Late Holocene Dynamics of Asian Boreal Forests against Changing Geochemical and Climatic Conditions”, grant No. 19-05-00091.

Keywords: tree chemical elements, tree rings, temporal trend, calcium, lead, Scots pine, Siberian spruce, Siberian pine, Siberian larch, cluster analysis

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license • The authors declare that there is no conflict of interest