Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Идентификация кристаллического продукта жидкофазного окисления α-пинена кислородом воздуха в присутствии стеарата кобальта (II)

Версия для печати

А. А. Сосновская, В. Л. Флейшер

Рубрика: Химическая переработка древесины

Скачать статью (pdf, 1.4MB )

УДК

547.596.092.1

DOI:

10.37482/0536-1036-2021-4-173-180

Аннотация

Один из возможных вариантов жидкофазного окисления кислородом воздуха α-пинена приводит к образованию смеси терпеновых кислородсодержащих соединений (эпоксиды, спирты, кетоны и др.). Проблема здесь заключается в образовании большого количества 2-3-эпоксипинана, который с течением времени в результате гидролиза превращается в транс-собрерол, камфоленовый альдегид, транс-пинокарвеол, транс-карвеол, транс-3-пинен-2-ол. Первый из них имеет твердую кристаллическую структуру. Собрерол широко используется в парфюмерии при получении синтетических душистых веществ, в фармацевтической промышленности, в частности входит в составы лекарственных средств, обладающих муколитическим действием, а также применяется при лечении головных болей и таких заболеваний, как ринорея и хронический бронхит. Целью работы является идентификация кристаллического продукта, полученного жидкофазным окислением α-пинена кислородом воздуха в присутствии стеарата кобальта (II). Процесс жидкофазного окисления проводили при следующих параметрах: температура – 70 ºС, расход воздуха – 16,67 см3/с, продолжительность – 5 ч, количество катализатора – 0,2…0,5 %. Далее смесь подвергали паровой дистилляции для отделения мономеров (в их состав входят терпеновые кислородсодержащие соединения и углеводороды) от полимеров. В результате отстаивания и хранения смеси были обнаружены и выделены из маточного раствора кристаллы. Их идентификацию осуществляли с помощью ИК- и ЯМР 13С-спектроскопий, а также сканирующей электронной микроскопии. Установлено, что пространственная организация выделенных кристаллов и стандартного образца (Sigma Aldrich) представлена многослойными прямоугольным пластинками. Анализ ИК-спектров кристаллов показал, что полоса поглощения при волновом числе 3318 см–1 соответствует внутри- и межмолекулярным водородным связям в гидроксильных группах, при волновых числах 2887, 2935, 2975 см–1 – метиленовым группам. Такие данные сопоставимы с результатами ИК-спектров стандартного образца. С учетом предыдущих исследований ЯМР 1Н- [15] и ЯМР 13С- спектра установлено, что полученный кристаллический продукт жидкофазного окисления α-пинена является транс-собреролом.

Для цитирования: Сосновская А.А., Флейшер В.Л. Идентификация кристаллического продукта жидкофазного окисления α-пинена кислородом воздуха в присутствии стеарата кобальта (II) // Изв. вузов. Лесн. журн. 2021. № 4. С. 173–180. DOI: 10.37482/0536-1036-2021-4-173-180

Сведения об авторах

А.А. Сосновская, аспирант; ResearcherID:AAK-1321-2021, ORCID: https://orcid.org/0000-0001-7556-2284
В.Л. Флейшер, канд. техн. наук, доц.; ResearcherID:AAM-6580-2021, ORCID: https://orcid.org/0000-0003-2997-7707
Белорусский государственный технологический университет, ул. Свердлова, д. 13 а, Минск, Республика Беларусь, 220006; e-mail: v_fleisher@list.rua.sosnovskaya94@gmail.com

Ключевые слова

α-пинен, транс-собрерол, вербенол, вербенон, жидкофазное окисление, стеарат кобальта, эпоксид α-пинена

Для цитирования

Сосновская А.А., Флейшер В.Л. Идентификация кристаллического продукта жидкофазного окисления α-пинена кислородом воздуха в присутствии стеарата кобальта (II) // Изв. вузов. Лесн. журн. 2021. № 4. С. 173–180. DOI: 10.37482/0536-1036-2021-4-173-180

Литература

1. Алексеев И.Н., Ипатова Е.У., Фролова Л.Л. Атлас ЯМР и ИК спектров монотерпеноидов. Молдова: LAP LAMBERT Academic Publishing, 2017. 380 с. Alekseev I.N., Ipatova E.U., Frolova L.L. Monoterpenoids NMR and IR Spectra Atlas. Moldova, LAP LAMBERT Academic Publishing, 2017. 380 p.

2. Бухаркина Т.В., Вержичинская С.В., Гречишкина О.С., Караджев М.А. Подготовка этилбензола к воспроизводимому эксперименту по его жидкофазному окислению молекулярным кислородом в присутствии стеарата кобальта // Успехи в химии и хим. технологии. 2016. Т. 30, № 11. С. 41–43. Bukharkina T.V., Verzhichinskaya S.V., Grechishkina O.S., Karadzhev M.A. Preparation of Ethylbenzene for Reproducible Experiment on Its Liquid-Phase Oxidation by Molecular Oxygen in Presence of Cobalt Stearate. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology], 2016, vol. 30, no. 11, pp. 41–43.

3. Вержичинская С.В., Малинкин Д.А., Шарипов А.А. Индукционный период жидкофазного окисления этилбензола кислородом в присутствии стеарата кобальта. Схема превращений реагентов // Успехи в химии и хим. технологии. 2014. Т. 28, № 10. С. 35–38. Verzhichinskaya S.V., Malinkin D.A., Scharipov D.A. Scheme of Transformations in Induction Period of Liquid Phase Oxidation of Ethylbenzene by Atmospheric Oxygen in the Presence of Cobalt Stearate. Uspekhi v khimii i khimicheskoy tekhnologii [Advances in Chemistry and Chemical Technology], 2014, vol. 28, no. 10, pp. 35–38.

4. Ильина И.И., Максимчук Н.В., Семиколенов В.А. Каталитический синтез душистых веществ из растительных монотерпенов // Рос. хим. журн. (Журн. Рос. хим. о-ва им. Д.И. Менделеева). 2004. Т. XLVIII, № 3. С. 38–53. Il’ina I.I., Maksimchuk N.V., Semikolenov V.A. Catalytic Synthesis of Aromatic Substances from Plant Monoterpenes. Rossijskij himicheskij zhurnal [Russian Journal of General Chemistry], 2004, vol. XLVIII, no. 3, pp. 38–53.

5. Кислицын А.Н., Клабукова И.Н., Косюкова Л.В., Трофимов А.Н. Исследование процесса жидкофазного инициированного окисления α-пинена кислородом воздуха. Сообщение 1 // Химия растит. сырья. 2003. № 1. С. 53–59. Kislitsin A.N., Klabukova I.N., Kosyukova L.V., Trofimov A.N. Investigation of the Process of Liquid-Phase Initiated Oxidation of α-Pinene by Atmospheric Oxygen. Message 1. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2003, no. 1, pp. 53–59.

6. Кислицын А.Н., Клабукова И.Н., Трофимов А.Н. Исследование процесса жидкофазного инициированного окисления α-пинена кислородом воздуха. Сообщение 2 //Химия растит. сырья. 2003. № 4. С. 31–36. Kislitsin A.N., Klabukova I.N., Trofimov A.N. Investigation of the Process of Liquid-Phase Initiated Oxidation of α-Pinene by Atmospheric Oxygen. Message 2. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2003, no. 4, pp. 31–36.

7. Кислицын А.Н., Клабукова И.Н., Трофимов А.Н. О химизме жидкофазного окисления α-пинена кислородом воздуха // Химия растит. сырья. 2004. № 3. С. 109–116. Kislitsin A.N., Klabukova I.N., Trofimov A.N. On the Chemistry of Liquid-Phase Oxidation of α-Pinene by Atmospheric Oxygen. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2004, no. 3, pp. 109–116.

8. Меньшиков С.Ю., Мишина Ю.В., Микушина Ю.В., Остроушко А.А. Сравнительное изучение аэробного окисления скипидара // Журн. прикладной химии. 2008. Т. 81, вып. 1. С. 56–58. Men’shikov S.Yu., Mishina Yu.V., Mikushina Yu.V., Ostroushko A.A. A Comparative Study of Aerobic Oxidation of Turpentine. Zhurnal prikladnoy khimii [Russian Journal of Applied Chemistry], 2008, vol. 81, iss. 1, pp. 56–58. DOI: https://doi.org/10.1134/S1070427208010126

9. Патласов В.П., Савиных В.И., Кушнир С.Р., Лукоянов В.П. Исследование непрерывного процесса окисления α-пинена // Изв. вузов. Лесн. журн. 1999. № 5. С. 75–81. Patlasov V.P., Savinykh, V.I. Kushnir S.R. Lukoyanov V.P. Investigation of the Continuous Process of Oxidation of α-Pinene. Lesnoy Zhurnal [Russian Forestry Journal], 1999, no. 5, pp. 75–81.

10. Перкель А.Л., Воронина С.Г., Бунеева Е.И., Непомнящих Ю.В., Носачёва И.М. Пероксидные предшественники деструкции углеродной цепи в процессах жидкофазного окисления насыщенных соединений на стадиях, следующих за образованием спирта и кетона // Вестн. Кузбас. гос. техн. ун-та. 2003. № 5. С. 92–103. Perkel’ A.L., Voronina S.G., Buneyeva V.V., Nepomnyashchikh I.M., Nosacheva I.M. Peroxide Precursors of Carbon Chain Degradation in the Processes of Liquid-Phase Oxidation of Saturated Compounds at the Stages Following the Formation of Alcohol and Ketone. Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of the Kuzbass State Technical University], 2003, no. 5, pp. 92–103.

11. Рахимов А.И. Химия и технология органических перекисных соединений. М.: Химия, 1979. 392 с. Rakhimov A.I. Chemistry and Technology of Organic Peroxide Compounds. Moscow, Khimiya Publ., 1979. 392 p.

12. Сосновская А.А., Флейшер В.Л. Система Co2+/H2O2 как катализатор жидкофазного окисления α-пинена // Технология органических веществ: материалы 83-й науч.-техн. конф. Минск: БГТУ, 2019. С. 18. Sosnovskaya A.A., Fleisher V.L. The Co2+/H2O2 System as a Catalyst for the Liquid-Phase Oxidation of α-Pinene. Technology of Organic Substances: Proceedings of the 83rd Scientific and Technical Conference. Minsk, BSTU Publ., 2019, p. 18.

13. Сосновская А.А., Флейшер В.Л. Исследование структуры кристаллического продукта реакции жидкофазного окисления альфа-пинена кислородом воздуха в присутствии стеарата кобальта (II) методами ренгеноструктурного анализа, ИК- и ЯМР-спектроскопии // Технология органических веществ: материалы 84-й науч.-техн. конф. Минск: БГТУ, 2020. С. 30–32. Sosnovskaya A.A., Fleisher V.L. Investigation of the Structure of Crystalline Product of Liquid-Phase Oxidation of α-Pinene by Atmospheric Oxygen in the Presence of Cobalt (II) Stearate X-Ray Diffraction Analysis, IR- and NMR-Spectroscopy. Technology of Organic Substances: Proceedings of the 84rd Scientific and Technical Conference. Minsk, BSTU Publ., 2020, pp. 30–32.

14. Сосновская А.А., Флейшер В.Л., Боркина Я.В. Оптимизация процесса жидкофазного окисления α-пинена кислородом воздуха в присутствии стеарата кобальта (II) //Вес. Нац. акад. навук Беларусі. Сер. хім. навук. 2019. Т. 55, № 2. С. 233–239. Sosnovskaya A.A., Fleisher V.L., Borkina Y.V. Optimization of Liquid-Phase α-Pinene Oxidation with Oxygen in Presence of Cobalt (II) Stearate. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya khimichnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Chemical series], 2019, vol. 55, no. 2, pp. 233–239. DOI: https://doi.org/10.29235/1561-8331-2019-55-2-233-239

15. Хавкинс Э.Дж.Э. Органические перекиси, их получение и реакции. М.; Л.: Химия, 1964. 536 с. Hawkins E.G.E. Organic Peroxides: Their Formation and Reactions. Trans. from English. Moscow, Khimiya Publ., 1964. 536 p.

16. Эмануэль Н.М., Денисов Е.Т., Майзус З.К. Цепные реакции окисления углеводородов в жидкой фазе. М.: Наука, 1965. 375 с. Emanuel’ N.M., Denisov E.T., Mayzus Z.K. Chain Reactions of Oxidation of Hydrocarbons in the Liquid Phase. Moscow, Nauka Publ., 1965. 375 p.

17. Эмануэль Н.М., Заиков Г.Е., Майзус З.К. Роль среды в радикально-цепных реакциях окисления органических соединений. М.: Наука, 1973. 278 с. Emanuel’ N.M., Zaikov G.E., Mayzus Z.K. The Role of the Medium in Radical Chain Reactions of Oxidation of Organic Compounds. Moscow, Nauka Publ., 1973. 278 p.

18. Allal B.A., Firdoussi L.E., Allaoud S., Katim A., Castanet Y., Mortreux A. Catalytic Oxidation of α-Pinene by Transition Metal Using t-Butyl Hydroperoxide and Hydrogen Peroxide. Journal of Molecular Catalysis A: Chemical, 2003, vol. 200, iss. 1-2, pp. 177–184. DOI: https://doi.org/10.1016/S1381-1169(03)00038-4

19. Becerra J.-A., Villa A.-L. Thermodynamic Analysis of α-Pinene and Limonene Allylic Oxidation over a FePcCl16-NH2-SiО2 Catalyst. Chemical Engineering & Technology, 2018, vol. 41, iss. 1, pp. 124–133. DOI: https://doi.org/10.1002/ceat.201700118

20. Durbetaki A.J., Linder S.M. Preparation of Sobrerol. Patent US, no. 2949489, 1960.

21. Lajumen M.K., Maunula T., Koskinen A.M.P. Co(II) Catalysed Oxidation of α-Pinene by Molecular Oxygen. Part 2. Tetrahedron, 2000, vol. 56, iss. 41, pp. 8167–8171. DOI: https://doi.org/10.1016/S0040-4020(00)00742-0

22. Naróg D., Szczepani A., Sobkowiak A. Iron(II, III)-Catalyzed Oxidation of Limonene by Dioxygen. Catalysis Letters, 2008, vol. 120, iss. 3-4, pp. 320–325. DOI: https://doi.org/10.1007/s10562-007-9290-7

23. Oliveira P., Rojas-Cervantes M.L., Ramos A.M., Fonseca I.M., Botelho do Rego A.M., Vital J. Limonene Oxidation over V2O5/TiO2 Catalysts. Catalysis Today, 2006, vol. 118, iss. 3-4, pp. 307–314. DOI: https://doi.org/10.1016/j.cattod.2006.07.032

24. Sun Kw.K., Jeongi Ch., Sup P.S., Gun Ch.S., Soo Kw.S., Kwang-Pyo L., Min L.S. Composition for Preventing or Treating Muscle Weakness Related Diseases Comprising Sobrerol. Patent WO, no. WO 2017043935 A1, 2017.


IDENTIFICATION OF THE CRYSTALLINE PRODUCT OF LIQUID-PHASE OXIDATION OF α-PINENE WITH ATMOSPHERIC OXYGEN IN THE PRESENCE OF COBALT (II) STEARATE

Alexandra A. Sosnovskaya, Postgraduate Student; ResearcherID: AAK-1321-2021, ORCID: https://orcid.org/0000-0001-7556-2284
Viachaslau L. Fleisher, Candidate of Engineering, Assoc. Prof.; ResearcherID: AAM-6580-2021, ORCID: https://orcid.org/0000-0003-2997-7707
Belarusian State Technological University, Sverdlova str., 13a, Minsk, 220006, Republic of Belarus; e-mail: a.sosnovskaya94@gmail.com, v_fleisher@list.ru

Abstract. One of the possible directions of liquid-phase oxidation of α-pinene by atmospheric oxygen leads to the formation of a mixture of terpene oxygen-containing compounds (epoxides, alcohols, ketones, etc.). The problem of this direction is the formation of a large amount of 2,3-epoxypinane which over time turns into trans-sobrerol, campholene aldehyde, trans-pinocarveol, trans-carveol, and trans-3-pinen-2-ol as a result of hydrolysis. One of the abovementioned substances with a solid crystalline structure is trans-sobrerol. Sobrerol is widely used in perfumery for synthesis of synthetically fragrant substances and pharmaceutical industry, in particular, it is a part of medicines with mucolytic action, as well as in the treatment of headaches and diseases such as rhinorrhea and chronic bronchitis. The aim of this work is to identify a crystalline product produced by liquid-phase oxidation of α-pinene with atmospheric oxygen in the presence of cobalt (II) stearate. The process of liquid-phase oxidation was carried out in the following conditions: temperature – 70 °С, air consumption – 16.67 cm3/s, duration – 5 h, amount of catalyst – 0.2–0.5 wt.%. Then the mixture was exposed to steam distillation in order to separate monomers (they contain terpene oxygen-containing compounds and hydrocarbons) from polymers. As a result of settling and storage of the mixture, crystals were found and isolated from the mother liquor solution. Their identification was carried out using IR and 13C NMR spectroscopy as well as scanning electron microscopy. It was found that the spatial organization of the isolated crystals and the standard sample (Sigma Aldrich) is represented by multilayer rectangular plates. Analysis of the IR spectra of the crystals showed that the absorption band at a wave number of 3318 cm–1 corresponds to intramolecular and intermolecular hydrogen bonds in hydroxyl groups, at wave numbers of 2887, 2935,2975 cm–1 it corresponds to methyl groups. The results obtained are comparable with the results of the IR-spectrum of the standard sample. Given the results of previous studies of 1H NMR spectrum [15] and 13C NMR spectrum, it was determined that the resulting crystalline product of liquid-phase oxidation of α-pinene is trans-sobrerol.
For citation: Sosnovskaya A.A., Fleisher V.L. Identification of the Crystalline Product of Liquid-Phase Oxidation of α-Pinene with Atmospheric Oxygen in the Presence of Cobalt (II) Stearate. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 4, pp. 173–180. DOI: 10.37482/0536-1036-2021-4-173-180

Keywords
: α-pinene, trans-sobrerol, verbenol, verbenone, liquid-phase oxidation, cobalt (II) stearate, α-pinene epoxide.