Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Влияние аэросила технического на свойства клеевых композиций

Версия для печати

Е. Г. Соколова, Д. С. Русаков, Г. С. Варанкина, А. Н. Чубинский

Рубрика: Механическая обработка древесины

Скачать статью (pdf, 1.3MB )

УДК

674.812

Аннотация

Основными факторами конкуренции продукции, произведенной с использованием клеевых композиций, являются токсичность готовых материалов, расход сырьевых и энергоресурсов, продолжительность основных технологических операций. Управлять этими факторами можно, применяя клеи с разным наполнением и/или модификацией. Клеи на основе фенолоформальдегидных и меламинокарбамидоформальдегидных смол используются для получения фанеры повышенной водостойкости. Кроме смол в состав клеев обычно вводят отвердители, наполнители и модификаторы, влияющие на свойства готовой продукции. Аэросил технический – один из модификаторов синтетических смол широкого спектра действия. Для него характерны 3 вида взаимодействия: физическая адсорбция, химическая адсорбция (образование водородных мостиков группами силанола) и химические реакции на поверхностном слое. Проанализирован химический состав аэросила. Особый интерес представляет алюминий фтористый технический (AlF3), способный к взаимодействию с фторидами щелочных металлов с образованием комплексных соединений, улучшающих структурирование полимера. Кислоты, входящие в состав аэросила, снижают рН до 2,0–3,5, поэтому мо- гут быть катализаторами процесса отверждения меламинокарбамидоформальдегидных смол. Выполнены исследования влияния аэросила технического на свойства клеевых систем на основе фенолоформальдегидной и меламинокарбамидоформальдегидной смол. Определены вязкость, время отверждения, смачивающая способность клеевых композиций. Полученные данные свидетельствуют о возможности применения данного модификатора в составе фенолоформальдегидных и меламинокарбамидоформальдегидных смол до 15 мас. ч. Установлен характер действия аэросила на клеевые композиции с помощью ИК -спектроскопии. Анализ результатов показал, что данное соединение способствует глубокому структурообразованию полимера за счет увеличения молекулярной массы молекул. Эти связи позволяют сформировать более структурированный полимер со связанным формальдегидом. Выполнены исследования влияния аэросила на свойства готовой продукции. При этом установлено улучшение эксплуатационных показателей: прочность склеивания увеличивается, токсичность фанеры уменьшается. Результаты экспериментов влияния аэросила технического с учетом сокращения времени склеивания могут быть применены при разработке технологических процессов получения фанеры повышенной водостойкости.

Сведения об авторах

Е.Г. Соколова, канд. техн. наук, доц.; ResearcherID: ABE-3531-2020, ORCID: https://orcid.org/0000-0002-9698-9321
Д.С. Русаков, канд. техн. наук, доц.; ResearcherID:I-9245-2017, ORCID: https://orcid.org/0000-0002-4344-2779
Г.С. Варанкина, д-р техн. наук, проф.; ResearcherID: H-1922-2019, ORCID: https://orcid.org/0000-0003-3470-5124
А.Н. Чубинский, д-р техн. наук, проф.; ResearcherID: I-9432-2016, ORCID: https://orcid.org/0000-0001-7914-8056
Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, Санкт-Петербург, Россия, 194021; e-mail: nikitinaek@rambler.rudima-ru25@mail.ru, varagalina@yandex.ru, a.n.chubinsky@gmail.com

Ключевые слова

фанера, фенолоформальдегидная смола, меламинокарбамидофор- мальдегидная смола, модификация, аэросил технический, свойства клеев, ИК -спектроскопия, режимы склеивания шпона, прочность продукции, токсичность продукции

Для цитирования

Соколова Е.Г., Русаков Д.С., Варанкина Г.С., Чубинский А.Н. Влияние аэросила технического на свойства клеевых композиций // Изв. вузов. Лесн. журн. 2021. № 3. С. 133–144. DOI: 10.37482/0536-1036-2021-3-133-144

Литература

1. Анисимов М.В. Цеолитный наполнитель, активированный в электромагнитных полях, для производства фанеры // Лесотехн. журн. 2013. № 4. С. 94–102. Anisimov M.V. Zeolite Filler, Activated in Electromagnetic Fields for the Production of Plywood. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2013, no. 4, pp. 94–102. DOI: https://doi.org/10.12737/2186
2. Варанкина Г.С., Чубинский А.Н., Брутян К.Г. Модифицированные карбамидо- формальдегидные и фенолоформальдегидные клеи для древесно-стружечных плит и фанеры // Клеи. Герметики. Технологии. 2017. № 6. С. 12–14. Varankina G.S., Chubinskiy A.N., Brutyan K.G. Modified Urea-Formaldehyde and Phenol-Formaldehyde Adhesives for Wood Chipboards and Plywood. Klei. Germetiki. Tekhnologii [Adhesives. Sealants. Technologies], 2017, no. 6, pp. 12–14.
3. Варанкина Г.С., Русаков Д.С., Соколова Е.Г., Чубинский А.Н. Исследование порошкообразных фенолоформальдегидных смол для изготовления фанеры // Изв. СП бЛТА . 2020. Вып. 231. С. 151–166.
Varankina G.S., Rusakov D.S., Sokolova E.G., Chubinsky A.N. The study of powdered phenol-formaldehyde resins for the manufacture of plywood. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii [News of the Saint Petersburg State Forest Technical Academy], 2020, iss. 231, pp. 151–166. DOI: https://doi.org/10.21266/2079-4304.2020.231.151-166
4. Глебов М.П., Брутян К.Г. Анализ природных минеральных модификаторов для клеящих смол // Первичная обработка древесины. Лесопиление и сушка пиломатериалов. Состояние и перспективы развития. СП б.: СП бГЛТА , 2007. С. 28–33. Glebov M.P., Brutyan K.G. Analysis of Natural Mineral Modifiers for Adhesive Resins. Primary Wood Processing. Sawmilling and Drying of Timber. State and Prospects for Development. Saint Petersburg, SPbGLTA Publ., 2007, pp. 28–33.
5. ГОСТ 9624–2009. Древесина слоистая клееная. Метод определения предела прочности при скалывании. Дата введения: 2011–01–01. М.: Стандартинформ, 2010. 11 с. State Standard. GOST 9624–2009. Laminated Glued Wood. Method for Determination of Shear Strength. Moscow, Standartinform Publ., 2010. 11 p.
6. ГОСТ 27678–2014. Плиты древесные и фанера. Перфораторный метод определения содержания формальдегида. Дата введения: 2016–01–01. М.: Стандартинформ, 2015. 9 c. State Standard. GOST 27678–2014. Wood-Based Panels and Plywood. Perforator Method for Determination of  ormaldehyde Content. Moscow, Standartinform Publ., 2015. 9 p.
7. ГОСТ 20501–2015. Клеи для древесины. Метод определения технологических характеристик. Доступ из системы нормативов NormaCS. State Standard. GOST 20501–2015. Glues for Wood. Methods for Determination of Technological Characteristics.
8. Дейнеко И.П. Утилизация лигнинов: достижения, проблемы и перспективы // Химия растительного сырья. 2012. № 1. С. 5–20. Deineko I.P. Utilization of Lignins: Achievements, Problems and Prospects. Khimija Rastitel’nogo Syr’ja [Chemistry of plant raw material], 2012, no. 1, pp. 5–20.
9. Доронин Ю.Г., Мирошниченко С.Н., Свиткина М.М. Синтетические смолы в деревообработке: [справ.]. М.: Лесн. пром-сть, 1987. 220 с. Doronin Yu.G., Miroshnichenko S.N., Svitkina M.M. Synthetic Resins in Woodworking. Moscow, Lesnaya promyshlennost’ Publ., 1987. 220 p.
10. Жук П.М. Анализ способов снижения эмиссии формальдегида из древесных плит // Междунар. науч.-исслед. журн. 2017. № 11(65), ч. 4. С. 36–40. Zhuk P.M. Analysis of Methods of Reducing Formaldehyde Emission from Wood Boards. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal [International Research Journal], 2017, no. 11(65), part 4, pp. 36–40. DOI: https://doi.org/10.23670/IRJ.2017.65.117
11. Казакевич Т.Н. Склеивание хвойного шпона при пониженных температурах: автореф. дис. … канд. техн. наук. СП б., 1998. 20 с. Kazakevich T.N. Gluing of Coniferous Veneer at Low Temperatures: Cand. Eng. Sci. Diss. Abs. Saint Petersburg, 1998. 20 p.
12. Кондратьев В.П., Кондращенко В.И. Синтетические клеи для древесных материалов. М.: Науч. мир, 2004. 520 с. Kondratyev V.P., Kondrashchenko V.I. Synthetic Adhesives for Wood-Based Materials. Moscow, Nauchnyy mir Publ., 2004. 520 p.
13. Кондратьев В.П., Чубов А.Б., Соколова Е.Г. Совершенствование эксплуатационных свойств и технологии фанеры повышенной водостойкости // Изв. СП бЛТА . 2011. Вып. 194. С. 114–120. Kondratiev V.P., Chubov A.B., Sokolova E.G. The Improvement of Application Properties and Technology of Increased Waterresistance Plywood. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii [News of the Saint Petersburg State Forest Technical Academy], 2011, iss. 194, pp. 114–120.
14. Плотникова Г.П., Плотников Н.П. Модификация  карбамидоформальдегидных связующих для производства ДСтП // Сб. науч. тр. SWORLD Т. 44, № 3. Одесса, 2013. С. 88–90. Plotnikova G.P., Plotnikov N.P. Modification of Urea-Formaldehyde Binders for the Production of Wood Particle Board. Collection of Academic Papers SWORLD. Odessa, Nauchnyy mir Publ., 2013, vol. 44, no. 3, pp. 88–90
15. Соколова Е.Г. Модификация фенолоформальдегидной смолы меламинокарбамидоформальдегидной смолой для склеивания фанеры // Системы. Методы. Технологии. 2018. № 2(38) С. 111–115. Sokolova E.G. Modification of Phenol-Formaldehyde Resin with Melamine-Carbamide-Formaldehyde Resin for Bonding Plywood. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2018, no. 2(38), pp. 111–115. DOI: https://doi.org/10.18324/2077-5415-2018-2-111-115
16. Соколова Е.Г., Русаков Д.С., Чубинский А.Н., Варанкина Г.С., Угрюмов С.А. Оценка эксплуатационных свойств модифицированных синтетических смол и клееной фанеры на их основе // Клеи. Герметики. Технологии. 2020. № 9. С. 10–15. Sokolova E.G., Rusakov D.S., Chubinskiy A.N., Varankina G.S., Ugryumov S.A. Estimation of Service Properties of Modified Synthetic Resins and Plywood Based on Them. Klei. Germetiki. Tekhnologii [Adhesives. Sealants. Technologies], 2020, no. 9, pp. 10–15. DOI: https://doi.org/10.31044/1813-7008-2020-0-9-10-15
17. Справочник фанерщика / под ред. А.В. Волкова, А.Т. Орлова. СП б.: Изд-во Политехн. ун-та. 2010. 486 с. Plywood Manufacturer’s Guide. Ed. by A.V. Volkov, A.T. Orlov. Saint Petersburg, Polytechnic University Publ., 2010. 486 p.
18. Угрюмов С.А. Структура и свойства фенолоформальдегидных смол, модифицированных фурфурол-ацетоновым мономером, применительно к производству плитных древесных материалов // Древесные плиты: теория и практика. Материалы XX Междунар. науч.-практ. конф. СП б.: С.-Петерб. политехн. ун-т Петра Великого, 2017. С. 48–52. Ugryumov S.A. Structure and Properties of Phenol-Formaldehyde Resins Modified with Furfural-Acetone Monomer as Applied to the Production of Wood-Based Panel Materials. Wood Boards: Theory and Practice. Proceedings of the 20th International Scientific and Practical Conference. Saint Petersburg, SPbPU Publ., 2017, pp. 48–52.
19. Угрюмов С.А., Свиридов А.В., Федотов А.А. Исследование свойств модифицированного феноло-формальдегидного олигомера методом ИК -спектроскопии // Клеи. Герметики. Технологии. 2017. № 12. С. 26–28. Ugryumov S.A., Sviridov A.V., Fedotov A.A. Study of Modified Phenol-Formaldehyde Oligomer Properties by IR-Spectroscopy Method. Klei. Germetiki. Tekhnologii [Adhesives. Sealants. Technologies], 2017, no. 12, pp. 26–28.
20. Федотов А.А., Угрюмов С.А. Исследование водостойкости древесностружечных плит на основе модифицированных фенолформальдегидных олигомеров // Науч. тр. молодых ученых КГТУ . Вып. 15. Кострома: КГТУ , 2014. С. 45–49. Fedotov A.A., Ugryumov S.A. Study of Water Resistance of Particle Boards Based on Modified Phenol-Formaldehyde Oligomers. Academic Papers of Young Scientists of KSTU. Kostroma, KSTU Publ., 2014, iss. 15, pp. 45–49.
21. Цветков В.Е., Якунькин А.А. Синтез и свойства карбамидоформальдегидных смол, модифицированных солями органических кислот // Технология и оборудование для переработки древесины. Вып. 335. М.: МГУЛ , 2006. С. 220–223. Tsvetkov V.E., Yakun’kin A.A. Synthesis, and Properties of Urea-Formaldehyde Resins Modified with Organic Acid Salts. Technology and Equipment for Wood Processing. Moscow, MGUL Publ., 2006, iss. 335, pp. 220–223.
22. Чубинский А.Н., Казакевич Т.Н. Склеивание хвойной фанеры при пониженных температурах // Деревообраб. пром-сть. 1992. № 4. С. 4–5. Chubinskiy A.N., Kazakevich T.N. Gluing of Coniferous Plywood at Low Temperatures. Derevoobrabatyvayushchaya promyshlennost’, 1992, no. 4, pp. 4–5.
23. Osetrov A.V., Ugryumov S.A. Assessment of Activation Energy of Modified Phenol-Formaldehyde Resin. Polymer Science, Series D, 2016, vol. 9, iss. 1, pp. 31–32. DOI: https://doi.org/10.1134/S1995421216010160
24. Ugryumov S.A. A Study of the Viscosity of Phenol–Formaldehyde Resin Modified with Furfural–Acetone Monomer FA. Polymer Science, Series D, 2017, vol. 10, iss. 2, pp. 99–102. DOI: https://doi.org/10.1134/S199542121702023X
25. Ugryumov S.A., Tsvetkov V.E. Enhancement of Service Characteristics of Boon Boards by Modifying Carbamide-Formaldehyde Binder with Poly(Vinyl Acetate) Dispersion. Polymer Science, Series D, 2008, vol. 1, iss. 4, pp. 241–243. DOI: https://doi.org/10.1134/S1995421208040059
26. Ugryumov S.A., Sviridov A.V., Fedotov A.A. Investigation of the Properties of Modified Phenol-Formaldehyde Oligomer Using IR Spectroscopy. Polymer Science, Series D, 2018, vol. 11, iss. 3, pp. 277–279. DOI: https://doi.org/10.1134/S1995421218030206
27. Uguina M.A., Sotelo J.L., Serrano D.P. Roles of ZSM-5 Modifier Agents in
Selective Toluene Disproportionation. The Canadian Journal of Chemical Engineering, 1993, vol. 71, iss. 4, pp. 558–563. DOI: https://doi.org/10.1002/cjce.5450710408
28. Vick C.B. Phenolic Adhesive Bonds to Aspen Veneers Treated with Amino-Resin Fire Retardants. Forest Products Journal, 1994, vol. 44, no. 1, pp. 33–40.
29. Vick C.B. Coupling Agent Improves Durability of PRF Bonds to CCA-Treated Southern Pine. Forest Products Journal, 1995, vol. 45, no. 3, pp. 78–84.
30. Weiland J.J., Guyonnet R. Study of Chemical Modifications and Fungi Degradation of Thermally Modified Wood Using DRIFT Spectroscopy. Holz als Roh- und Werkstoff [European Journal of Wood and Wood Products], 2003, vol. 61, iss. 3, pp. 216–220. DOI: https://doi.org/10.1007/s00107-003-0364-y
31. Wotten A.L., Sellers T., Tahir P.M. Reaction of Formaldehyde with Lignin. Forest Products Journal, 1988, vol. 38, no. 6, pp. 45–46.

Ссылка на английскую версию:

Effect of Technical Aerosil on the Properties of Adhesive Compositions

EFFECT OF TECHNICAL AEROSIL ON THE PROPERTIES OF ADHESIVE COMPOSITIONS

Ekaterina G. Sokolova, Candidate of Engineering, Assoc. Prof.; ResearcherID: ABE-3531-2020, ORCID: https://orcid.org/0000-0002-9698-9321
Dmitry S. Rusakov, Candidate of Engineering, Assoc. Prof.; ResearcherID: I-9245-2017, ORCID: https://orcid.org/0000-0002-4344-2779
Galina S. Varankina, Doctor of Engineering, Prof.; ResearcherID: H-1922-2019, ORCID: https://orcid.org/0000-0003-3470-5124
Anatoly N. Chubinsky, Doctor of Engineering, Prof.; ResearcherID: I-9432-2016, ORCID: https://orcid.org/0000-0001-7914-8056
Saint Petersburg State Forest Technical University, Institutskiy per., 5, Saint Petersburg, 194021, Russian Federation; e-mail: nikitinaek@rambler.ru, dima-ru25@mail.ruvaragalina@yandex.ru, a.n.chubinsky@gmail.com

Abstract. The main drivers of competition among the products made with the use of adhesive compositions are the toxicity of finished products, the consumption of raw materials and energy resources, the duration of the main technological operations. These drivers can be controlled by using adhesives with different fillings and/or modifications. Adhesives based on phenol-formaldehyde and melamine-urea-formaldehyde resins are used to produce plywood with increased water resistance. Apart from resins, adhesives usually contain hardeners, fillers, and modifiers that affect the properties of the finished product. Technical aerosol is one of the modifiers of synthetic resins with a wide range of action. Aerosil is characterized by three types of interaction: physical adsorption, chemical adsorption (formation of hydrogen bridges by silanol groups), and chemical reactions on the surface layer. The chemical composition of aerosil was analyzed. Technical aluminum fluoride (AlF3) is of particular interest. It can interact with alkali metal fluorides with the formation of complex compounds that improve polymer structuring. The acids that make up aerosil reduce the pH to 2.0–3.5, so they can be catalysts for the curing process of melamine-urea-formaldehyde resins. The effect of technical aerosil on the properties of adhesive systems based on phenol-formaldehyde and melamine-ureaformaldehyde resins has been studied. Viscosity, curing time, and wetting ability of adhesive compositions were determined. The obtained results indicate the possibility of using this modifier in the composition of phenol-formaldehyde and melamine-urea-formaldehyde resins up to 15 pts. wt. The nature of the aerosil action on adhesive compositions was determined using IR spectroscopy. Analysis of the results showed that aerosil promotes deep structure formation of the polymer by increasing the molecular weight of the molecules. These bonds make it possible to form a more structured polymer with bound formaldehyde. Studies of the effect of aerosil on the properties of finished products were carried out. At the same time, an increase in performance indicators was found: the strength of adhesion increases, the toxicity of plywood decreases. The results of experiments on the effect of technical aerosil, taking into account the reduction of bonding time can be applied in the development of technological processes for obtaining plywood of high water resistance.
For citation: Sokolova E.G., Rusakov D.S., Varankina G.S., Chubinsky A.N. Effect of Technical Aerosil on the Properties of Adhesive Compositions. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 3, pp. 133–144. DOI: 10.37482/0536-1036-2021-3-133-144

Keywords: plywood, phenol-formaldehyde resin, melamine-urea-formaldehyde resin, modification, technical aerosil, properties of adhesives, IR spectroscopy, veneer gluing modes, strength of products, toxicity of products