Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Нитрование гидролизного лигнина в водно-апротонных средах

Версия для печати

Д.Е. Лахманов, Ю.Г. Хабаров, В.А. Вешняков, М.Р. Ёкубжанов

Рубрика: Химическая переработка древесины

Скачать статью (pdf, 0.8MB )

УДК

66.095.268+661.7+665.947.4

DOI:

10.37482/0536-1036-2020-5-184-192

Аннотация

Технические лигнины образуются из природных лигнинов при химической или биохимической переработке растительного сырья. С помощью модификации из лигнинов можно получать ценные продукты, в том числе мономеры, полимерные материалы и композиты. Приводятся результаты исследования нитрования гидролизного лигнина в различных условиях. Цель исследования – получение нитрованного гидролизного лигнина с максимальным выходом и максимальным содержанием азота, поэтому нитрование проводили с помощью азотной кислоты в среде «вода – апротонный растворитель» (1,4-диоксан, диметилсульфоксид, тетрагидрофуран, диметилформамид, ацетонитрил). В качестве нитрующего реагента также был использован ацетилнитрат, который является смешанным ангидридом азотной и уксусной кислот. Поэтому расход уксусного ангидрида при синтезе ацетилнитрата был взят с учетом воды, присутствующей в концентрированной азотной кислоте. Ацетилнитрат получали с помощью реакции уксусного ангидрида и концентрированной азотной кислоты при комнатной температуре в течение 30 мин. В отличие от азотной кислоты ацетилнитрат является мягким нитрующим реагентом. Нитрование проводили в установке с обратным холодильником на кипящей водяной бане в течение 2…5 мин (нитрование азотной кислотой) или 1…60 мин (нитрование ацетилнитратом). По завершении реакции нитрования продукты были выделены, промыты дистиллированной водой и высушены до постоянной массы без нагревания. При нитровании азотной кислотой максимальный выход нитрованного гидролизного лигнина (83…101 %) достигается с использованием диоксана, ацетонитрила и тетрагидрофурана, а максимальное содержание азота (4,3…4,5 %) – с использованием 1,4-диоксана, ацетонитрила. Применение диметилсульфоксида и диметилформамида приводит к снижению выхода продукта до 23…35 %, к меньшему содержанию в нем азота 1,3…3,9 % и повышенному содержанию кислорода, что указывает на протекание не только нитрования, но и деполимеризации и окислительных превращений. При нитровании ацетилнитратом реакция проходит в течение 1…3 мин, при этом в продукте содержится до 4,7 % азота. На ИК-спектрах нитрованных гидролизных лигнинов появляются новые полосы поглощения при 1555 и 1710 см–1, обусловленные наличием карбоксильных и нитро-групп.
Финансирование: Исследования проведены при финансовой поддержке гранта РНФ № 18-73-00250 с использованием оборудования ЦКП НО «Арктика» САФУ.

Сведения об авторах

Д.Е. Лахманов, канд. хим. наук, науч. сотр.; ResearcherID: N-5418-2016,
ORCID: https://orcid.org/0000-0001-9940-4862
Ю.Г. Хабаров, д-р хим. наук, проф.; ResearcherID: P-1802-2015,
ORCID: https://orcid.org/0000-0001-8392-0985
В.А. Вешняков, канд. хим. наук, доц.; ResearcherID: E-3882-2017,
ORCID: https://orcid.org/0000-0002-8278-5053
М.Р. Ёкубжанов, аспирант
Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; e-mail: dmi84339053@ya.ru, khabarov.yu@mail.ru, viacheslav.veshnyakov@mail.rucool.mominjon@mail.ru

Ключевые слова

гидролизный лигнин, нитрование, апротонные растворители, азотная кислота, ацетилнитрат

Для цитирования

Лахманов Д.Е., Хабаров Ю.Г., Вешняков В.А., Ёкубжанов М.Р. Нитрование гидролизного лигнина в водно-апротонных средах // Изв. вузов. Лесн. журн. 2020. № 5. С. 184–192. DOI: 10.37482/0536-1036-2020-5-184-192

Литература

1. Беллами Л. Новые данные по ИК-спектрам сложных молекул / пер. с англ. М.: Мир, 1971. 318 с. [Bellamy L.J. The Infra-Red Spectra of Complex Molecules. Translated from English. Moscow, Mir Publ., 1971. 318 p.]. DOI: 10.1007/978-94-011-6017-9
2. Гоготов А.Ф., Панасенков Ю.В., Панчуков И.Л., Шилкин Е.В., Бабкин В.А. Повышение экологической безопасности технологии нитрования лигнина // Химия в интересах устойчивого развития. 1996. № 4. С. 245–257. [Gogotov A.F., Panasenkov Yu.V., Panchukov I.L., Shilkin E.V., Babkin V.A. Improving the Environmental Safety of Lignin Nitration Technology. Khimiya v interesakh ustoychivogo razvitiya [Chemistry for Sustainable Development], 1996, no. 4, pp. 245–257].
3. Топчев А.В. Нитрование углеводородов и других органических соединений. М.: Изд-во АН СССР, 1956. 488 с. [Topchiev A.V. Nitration of Hydrocarbons and Other Organic Compounds. Moscow, AN SSSR Publ., 1956. 488 p.]. DOI: 10.1016/c2013-0-05254-1
4. Хабаров Ю.Г., Лахманов Д.Е. Деполимеризация конденсированных лигнинов под действием азотной кислоты // Изв. вузов. Лесн. журн. 2014. № 5. С. 176–182. [Habarov U.G., Lakhmanov D.E. Depolymerization of Condensed Lignins with Hydrogen Nitrate. Lesnoy Zhurnal [Russian Forestry Journal], 2014, no. 5, pp. 176–182]. URL: http://lesnoizhurnal.ru/upload/iblock/99a/2-_-depolimerizatsiya-kondensirovannykhligninov-pod-deystv...
5. Хабаров Ю.Г., Вешняков В.А., Кузяков Н.Ю. Получение и применение комплексов лигносульфоновых кислот с катионами железа // Изв. вузов. Лесн. журн. 2019. № 5. С. 167–187. [Khabarov Yu.G., Veshnyakov V.A., Kuzyakov N.Yu. Preparation and Application of Complexes of Lignosulfonic Acids with Iron Cations. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 5, pp. 167–187]. DOI: 10.17238/issn0536-1036.2019.5.167, URL: http://lesnoizhurnal.ru/upload/iblock/73e/167_187.pdf
6. Adams J.P. Nitro and Related Groups. Journal of the Chemical Society, Perkin Transactions 1, 2002, iss. 23, pp. 2586–2597. DOI: 10.1039/b009711j
7. Al-Saraireh F.M., Svinoroev Y. Assessment of Casting Binding Materials Based on Modified Technical Lignosulfonates. International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), 2020, vol. 10, iss. 2, pp. 335–346.
8. Aro T., Fatehi P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem, 2017, vol. 10, iss. 9, pp. 1861–1877. DOI: 10.1002/cssc.201700082
9. Belgacem M.N., Gandini A. Monomers, Polymers and Composites from Renewable Resources. Amsterdam, Elsevier, 2008. 552 p.
10. Cazacu G., Capraru M., Popa V.I. Advances Concerning Lignin Utilization in New Materials. Advances in Natural Polymers. Ed. by S. Thomas, P. Visakh, A. Mathew. Berlin, Springer, 2013, pp. 255–312. DOI: 10.1007/978-3-642-20940-6_8
11. Chen J., Fan X., Zhang L., Chen X., Sun S., Sun R.-C. Research Progress in Lignin-Based Slow/Controlled Release Fertilizer. ChemSusChem, 2020, vol. 13, iss. 17, pp. 4356–4366. DOI: 10.1002/cssc.202000455
12. Chio C., Sain M., Qin W. Lignin Utilization: A Review of Lignin Depolymerization from Various Aspects. Renewable and Sustainable Energy Reviews, 2019, vol. 107, pp. 232–249. DOI: 10.1016/j.rser.2019.03.008
13. Christopher L.P. Integrated Forest Biorefineries: Current State and Development Potential. Ch. 1. Integrated Forest Biorefineries: Challenges and Opportunities. London, Royal Society of Chemistry, 2012, pp. 1–66. DOI: 10.1039/9781849735063-00001
14. Evstigneyev E.I., Yuzikhin O.S., Gurinov A.A., Ivanov A.Yu., Artamonova T.O., Khodorkovskiy M.A., Bessonova E.A., Vasilyev A.V. Study of Structure of Industrial Acid Hydrolysis Lignin, Oxidized in the H2O2-H2SO4 System. Journal of Wood Chemistry and Technology, 2016, vol. 36, iss. 4, pp. 259–269. DOI: 10.1080/02773813.2015.1137945
15. Fernández-Pérez M., Garrido-Herrera F.J., González-Pradas E. Alginate and Lignin-Based Formulations to Control Pesticides Leaching in a Calcareous Soil. Journal of Hazardous Materials, 2011, vol. 190, iss. 1-3, pp. 794–801. DOI: 10.1016/j.jhazmat. 2011.03.118
16. Guo X., Zhang S., Shan X.-Q. Adsorption of Metal Ions on Lignin. Journal of Hazardous Materials, 2008, vol. 151, iss. 1, pp. 134–142. DOI: 10.1016/j.jhazmat. 2007.05.065
17. Huo P., Savitskaya T., Reznikov I., Hrynshpan D., Tsygankova N., Telysheva G., Arshanitsa A. Hydrolysis Lignin as a Sorbent and Basis for Solid Composite Biofuel. Advances in Bioscience and Biotechnology, 2016, vol. 7, no. 11, pp. 501–530. DOI: 10.4236/abb.2016.711046
18. Louw R. Acetyl Nitrate. Encyclopedia of Reagents for Organic Synthesis. Ed. L.A. Parquette. New York, John Wiley & Sons, 2001. DOI: 10.1002/047084289X.ra032
19. Mimini V., Kabrelian V., Fackler K., Hettegger H., Potthast A., Rosenau T. Lignin-Based Foams as Insulation Materials: A Review. Holzforschung, 2018, vol. 73, iss. 1, pp. 117–130. DOI: 10.1515/hf-2018-0111
20. Olah G.A., Malhotra R., Narang S.C. Nitration: Methods and Mechanisms. New York, VCH Publishers, 1989. 330 p.
21. Rodrigues J.A.R., de Oliveira Filho A.P., Moran P.J.S., Custódio R. Regioselectivity of the Nitration of Phenol by Acetyl Nitrate Adsorbed on Silica Gel. Tetrahedron, 1999, vol. 55, iss. 22, pp. 6733–6738. DOI:10.1016/S0040-4020(99)00320-8
22. Satheesh Kumar M.N., Mohanty A.K., Erickson L., Misra M. Lignin and Its Applications with Polymers. Journal of Biobased Materials and Bioenergy, 2009, vol. 3, no. 1, pp. 1–24. DOI: 10.1166/jbmb.2009.1001
23. Stevens J., Gardner D.J. Enhancing the Fuel Value of Wood Pellets with the Addition of Lignin. Wood and Fiber Science, 2010, vol. 42, no. 4, pp. 439–443.
24. Thiemann M., Scheibler E., Wiegand K.W. Nitric Acid, Nitrous Acid, and Nitrogen Oxides. Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim, Wiley-VCH, 2000. 50 p. DOI: 10.1002/14356007.a17_293
25. Wang Y., Sun S., Li F., Cao X., Sun R. Production of Vanillin from Lignin: The Relationship between β-O-4 Linkages and Vanillin Yield. Industrial Crops and Products, 2018, vol. 116, pp. 116–121. DOI: 10.1016/j.indcrop.2018.02.043

Ссылка на английскую версию:

Nitration of Hydrolysis Lignin in Water-Aprotic Solvent Mixtures

NITRATION OF HYDROLYSIS LIGNIN IN WATER-APROTIC SOLVENT MIXTURES

D.E. Lakhmanov, Candidate of Chemistry, Research Scientist; ResearcherID: N-5418-2016, ORCID: https://orcid.org/0000-0001-9940-4862
Yu.G. Khabarov, Doctor of Chemistry, Prof.; ResearcherID: P-1802-2015,
ORCID: https://orcid.org/0000-0001-8392-0985
V.A. Veshnyakov, Candidate of Chemistry, Assoc. Prof.; ResearcherID: E-3882-2017,
ORCID: https://orcid.org/0000-0002-8278-5053
M.R. Yokubjanov, Postgraduate Student
Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; е-mail: dmi84339053@ya.ru, khabarov.yu@mail.ru, viacheslav.veshnyakov@mail.ru, cool.mominjon@mail.ru

Industrial lignins are formed from native lignins during chemical or biochemical processing of plant raw materials. Lignins can be modified to produce valuable products, including monomers, polymeric materials, and composites. The article presents the results of a study of hydrolysis lignin nitration under various conditions. The aim of the study was to obtain a nitrated hydrolysis lignin with a maximum yield and maximum nitrogen content. Therefore, the nitration was carried out using nitric acid in a water-aprotic solvent binary mixtures (1,4-dioxane, dimethyl sulfoxide, tetrahydrofuran, dimethylformamide, acetonitrile). Acetyl nitrate, which is a mixed anhydride of nitric and acetic acids, was also used as a nitrating agent. In this regard, the consumption of acetic anhydride in the synthesis of acetyl nitrate was used taking into account the water present in concentrated nitric acid. Acetyl nitrate was obtained by the reaction of acetic anhydride and concentrated nitric acid at room temperature for 30 min. Acetyl nitrate is a mild nitrating agent opposed to nitric acid. Nitration was carried out under reflux in a boiling water bath for 2–5 min (with nitric acid) or 1–60 min (with acetyl nitrate). Upon completion of the nitration reaction, the products were filtered, washed with distilled water and dried to constant weight without heating. When nitration was performed with nitric acid, the maximum yield of nitrated hydrolysis lignin (83–101 %) was achieved using 1,4-dioxane, acetonitrile, and tetrahydrofuran; and the maximum nitrogen content (4.3–4.5 %) was achieved using 1,4-dioxane or acetonitrile. The use of dimethyl sulfoxide and dimethylformamide leads to a decrease in the product yield to 23–35 %, to a lower nitrogen content of 1.3–3.9 % and an increased oxygen content, which indicates the occurrence of not only nitration, but also depolymerization and oxidative transformations. When nitration with acetyl nitrate, the reaction takes place for 1–3 min, herewith the product contains up to 4.7 % of nitrogen. On the IR spectra of nitrated hydrolysis lignins, new absorption bands appear at 1555 and 1710 cm–1 due to the appearance of carboxyl and nitro groups.
For citation: Lakhmanov D.E., Khabarov Yu.G., Veshnyakov V.A., Yokubjanov M.R. Nitration of Hydrolysis Lignin in Water-Aprotic Solvent Mixtures. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 5, pp. 184–192. DOI: 10.37482/0536-1036-2020-5-184-192
Funding: The research was carried out with the financial support of the Russian Science Foundation grant No. 18-73-00250 using the equipment of the NArFU’s Core Facility Center “Arktika”.

Keywords: hydrolysis lignin, nitration, aprotic solvents, nitric acid, acetyl nitrate.

Поступила 14.02.20 / Received on February 14, 2020