Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Потребление топлива портальным лесохозяйственным трактором с учетом стохастических факторов

Версия для печати

Д.Г. Мясищев, Д.Н. Шостенко, А.В. Серебренников

Рубрика: Лесоэксплуатация

Скачать статью (pdf, 1.2MB )

УДК

630*375.4

DOI:

10.37482/0536-1036-2020-5-145-154

Аннотация

В современных условиях просматривается тенденция создания универсальной тракторной базы тягового класса. С позиции производителя таких тракторов, все очень целесообразно и логично: минимизируется количество унифицированных узлов и агрегатов, снижается номенклатурный список комплектующих. Однако это приемлемо до определенной степени, которая ограничена технологическим шлейфом для создаваемого трактора и спецификой его применения. В статье рассматриваются портальный лесохозяйственный трактор тягового класса 6 кН, имеющий разнообразный шлейф рабочих органов и машин, а также грузовую платформу на задней шарнирносоединенной секции, и грузовой режим движения агрегата по случайному микропрофилю под колесами в колеях. Решается задача статистической динамики. В качестве выходного процесса строится изображение Лапласа для часового расхода топлива двигателем трактора, в качестве входного процесса моделируется Лапласово изображение внешнего случайного воздействия от микропрофиля по колеям. При этом определяется передаточная функция часового расхода топлива, которая позволяет при заданном микропрофиле по колеям оценить спектральную плотность часового расхода топлива трактором и дисперсию часового расхода. С использованием корреляционной теории случайных процессов оценивается математическое ожидание часового расхода топлива при транспортных работах и появляется возможность решения оптимизационной задачи – выбора таких шин ходовых тележек, при которых обеспечивается минимум дисперсии и математического ожидания часового расхода топлива транспортного агрегата. Ситуационная комбинация сводится к тому, что с ростом радиуса шин, с одной стороны, происходит увеличение высоты центра тяжести агрегата, что способствует повышению часового расхода топлива, но, с другой стороны, увеличение радиуса шины снижает коэффициент сопротивления качению колеса и расход топлива. Таким образом, имеется задача дискретной оптимизации – выбора конструкции шины, при которой минимизируются энергетические затраты исследуемого транспортного агрегата.

Сведения об авторах

Д.Г. Мясищев, д-р техн. наук, проф.
Д.Н. Шостенко, канд. техн. наук, доц.
А.В. Серебренников, асп.; ResearcherID: AAY-1917-2020,
ORCID: https://orcid.org/0000-0002-2935-860X
Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; e-mail: d.myasishchev@narfu.ru, d.shostenko@narfu.ru, serebrennikov.a@edu.narfu.ru

Ключевые слова

портальный трактор, микропрофиль, расход топлива, передаточная функция, оптимизация

Для цитирования

Мясищев Д.Г., Шостенко Д.Н., Серебренников А.В. Потребление топлива портальным лесохозяйственным трактором с учетом стохастических факторов // Изв. вузов. Лесн. журн. 2020. № 5. С. 145–154. DOI: 10.37482/0536-1036-2020-5-145-154

Литература

1. Анисимов Г.М., Жендаев С.Г., Жуков А.В. Лесные машины (тракторы, автомобили, тепловозы) / под ред. Г.М. Анисимова. М.: Лесн. пром-сть, 1989. 512 с. [Anisimov G.M., Zhendayev S.G., Zhukov A.V. Forest Machines (Tractors, Cars, Diesel Locomotives). Ed. by G.M. Anisimov. Moscow, Lesnaya promyshlennost’ Publ., 1989. 512 p.].
2. Антипин В.П., Варава В.И., Каршев Г.В. Энергозатраты трактора К-744Р в транспортном режиме // Тракторы и сельхозмашины. 2009. №6. С. 15–18. [Antipin V.P., Varava V.I., Karshev G.V. Energy Consumption of the K-744R Tractor in Transport Mode. Traktory i sel’khozmashiny, 2009, no. 6, pp. 15–18].
3. Антипин В.П., Власов Е.Н., Десято А.Н. Часовой расход топлива трелевочным трактором в условиях эксплуатации // Повышение потенциальных свойств машин и механизмов лесного комплекса: межвуз. сб. науч. тр. СПб.: СПбГЛТА, 2001. С. 13–19. [Antipin V.P., Vlasov E.N., Desyatov A.N. Hourly Fuel Consumption of a Skidding Tractor under Operation. Improving the Potential Properties of Machines and Mechanisms of the Forestry Complex: Interuniversity Collection of Academic Papers. Saint Petersburg, GLTA Publ., 2001, pp. 13–19].
4. Антипин В.П., Дурманов М.Я., Каршев Г.В. Производительность, энергозатраты и ресурс машинно-тракторного агрегата. СПб.: Изд-во Политехн. ун-та, 2017. 484 с. [Antipin V.P., Durmanov M.Ya., Karshev G.V. Productivity, Energy Consumption and Resource of a Machine-Tractor Unit. Saint Petersburg, Polytech Publ., 2017. 484 p.].
5. Гоберман В.А., Гоберман Л.А. Технология научных исследований – методы, модели, оценки. 2-е изд., стереотип. М.: МГУЛ, 2002. 390 с. [Goberman V.A. Goberman L.A. Research Technology – Methods, Models and Assessment. Moscow, MGUL Publ., 2002. 390 p.].
6. Копотилов В.И. Аналитические методы определения эксплуатационного расхода топлива и оценки топливной экономичности автомобилей: моногр. Тюмень: Вектор Бук, 2008. 344 с. [Kopotilov V.I. Analytical Methods for Determining the Operational Fuel Consumption and Assessing the Fuel Efficiency of Cars: Monograph. Tyumen, Vector Book Publ., 2008. 344 p.].
7. Кутьков Г.М. Тракторы и автомобили: теория и технологические свойства. 2-e изд., перераб. и доп. М.: ИНФРА-М, 2014. 506 с. [Kutkov G.M. Tractors and Cars: Theory and Technological Properties. Moscow, INFRA-M Publ., 2014. 506 p.].
8. Лурье А.Б. Статистическая динамика сельскохозяйственных агрегатов. 2-е изд., перераб. и доп. М.: Колос, 1981. 382 с. [Lurie A.B. Statistical Dynamics of Agricultural Machines. Moscow, Kolos Publ., 1981. 382 p.].
9. Мухамадьяров Ф.Ф., Остальцев В.П. Деформация почвы и энергозатраты на передвижение тракторов // Аграрная наука Евро-Северо-Востока. 2010. № 2(17). С. 72–75. [Mukhamadjarov F.F., Ostal’tsev V.P. Deformation of Soil and Energy-Costs at Movement of Tractors. Agrarnaya nauka Evro-Severo-Vostoka [Agricultural Science EuroNorth-East], 2010, no. 2(17), pp. 72–75].
10. Мясищев Д.Г. Статистическая динамика машин и оборудования лесного комплекса (в примерах). Архангельск: САФУ, 2015. 126 с. Режим доступа: http://narfu.ru/university/library/books/1834.pdf (дата обращения: 13.12.19). [Myasishchev D.G. Statistical Dynamics of Machines and Equipment of the Forestry Complex (in Examples). Arkhangelsk, NArFU Publ., 2015. 126 p.].
11. Мясищев Д.Г. Синтез структуры лесохозяйственного механизированного комплекса на базе малогабаритного мобильного силового модуля // Лесотехн. журн. 2017. Т. 7, № 1(25). С. 196–204. [Myasishchev D.G. Synthesis of Structure of Forest Mechanized Complex Based on a Compact Mobile Power Module. Lesotekhnicheskiy zhurnal [Forestry Engineering Journal], 2017, vol. 7, no. 1(25), pp. 196–204]. DOI: 12737/25211
12. Мясищев Д.Г., Прокопьев А.Ф. Обоснование параметров и выбор компонентов шасси мини-форвардера для рубок ухода в молодняках // Изв. вузов. Лесн. журн. 2009. № 3. С. 53–56. [Myasishchev D.G., Prokopjev A.F. Substantiation of Parameters and Components Choice of Miniforwarder Chassis for Young Growth Tending. Lesnoy Zhurnal [Russian Forestry Journal], 2009, no. 3, pp. 53–56]. URL: http://lesnoizhurnal.ru/upload/iblock/e83/e8352f58a992d1e40074132131acec00.pdf
13. Мясищев Д.Г., Путинцев С.А. Оптимизация расхода топлива роторного измельчителя растительных остатков // Изв. вузов. Лесн. журн. 2017. № 1. С. 129–140. [Myasishchev D.G., Putintsev S.A. Fuel Optimization of a Rotary Chopper for Plant Residues. Lesnoy Zhurnal [Russian Forestry Journal], 2017, no. 1, pp. 129–140]. DOI: 10.17238/issn0536-1036.2017.1.129, URL: http://lesnoizhurnal.ru/upload/iblock/1ad/myasishchev.pdf
14. Хабардин С.В., Михайлов Н.А. Методы определения расхода топлива при тяговых испытаниях тракторов и их анализ // Вестн. РГСХА. 2015. № 68. С. 114–122. [Khabardin S.V., Mikhailov N.A. Evaluation Methods of Fuel Consumption on Drawbar Tests of Tractors and Its Analysis. Vestnik IrGSHA, 2015, no. 68, pp. 114–122].
15. Шупляков С.М. Колебания и нагруженность трансмиссии автомобиля. М.: Транспорт, 1974. 328 с. [Shuplyakov S.M. Oscillations and Loading of Vehicle Transmission. Moscow, Transport Publ., 1974. 328 p.].
16. Čiplienė A., Gurevičius P., Janulevičius A., Damanauskas V. Experimental Validation of Tyre Inflation Pressure Model to Reduce Fuel Consumption during Soil Tillage. Biosystems Engineering, 2019, vol. 186, pp. 45–59. DOI: 10.1016/j.biosystemseng.2019.06.023
17. Grisso R.D., Kocher M.F., Vaughan D.H. Predicting Tractor Fuel Consumption. Applied Engineering in Agriculture, 2004, vol. 20(5), pp. 553–561. DOI: 10.13031/2013.17455
18. Janulevičius A., Šarauskis E., Čiplienė A., Juostas A. Estimation of Farm Tractor Performance as a Function of Time Efficiency during Ploughing in Fields of Different Sizes. Biosystems Engineering, 2019, vol. 179, pp. 80–93. DOI: 10.1016/j.biosystemseng.2019.01.004
19. Mileusnić Z.I., Petrović D.V., Đević M.S. Comparison of Tillage Systems according to Fuel Consumption. Energy, 2010, vol. 35, iss. 1, pp. 221–228. DOI: 10.1016/j.energy.2009.09.012
20. Osinenko P., Streif S. Optimal Traction Control for Heavy-Duty Vehicles. Control Engineering Practice, 2017, vol. 69, pp. 99–111. DOI: 10.1016/j.conengprac.2017.09.010
21. Riley K.F., Hobson M.P., Bence S.J. Mathematical Methods for Physics and Engineering. Cambridge, Cambridge University Press, 2006. 1304 p.
22. Vilde A., Pirs E. Simulation of the Impact of the Energetic Characters of Tractors and Machines on the Working Efficiency of the Soil Tillage Units. Proceedings of the 7th International Workshop on Modeling & Applied Simulation, Campora S. Giovanni, Italy, September 17–19, 2008. Rende, Italy, DIPTEM, 2008, pp. 314–320.

FUEL CONSUMPTION OF A STRADDLE FORESTRY TRACTOR IN CONSIDERATION OF STOCHASTIC FACTORS

D.G. Myasishchev, Doctor of Engineering, Prof.
D.N. Shostenko, Candidate of Engineering, Assoc. Prof. ResearcherID: AAY-1917-2020,
ORCID: https://orcid.org/0000-0002-2935-860X
Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; e-mail: d.myasishchev@narfu.ru, d.shostenko@narfu.ru, serebrennikov.a@edu.narfu.ru

Currently, there is a tendency for creation a cross-functional tractor line of drawbar category. Everything is very practical and consistent from the perspective of the producer of such tractors. The number of modular units and assemblies is minimized, and the list of components is reduced. However, all this is acceptable up to a certain limit, which is outlined by the technological trail of the tractor being created and the specifics of its application. The article deals with a straddle forestry tractor of drawbar category of 6 kN. It is assumed that the tractor has a variety of trains of working bodies and machines, as well as a cargo bed on the pin-joint section. The cargo mode of the unitʼs movement is examined by a random microprofile under the wheels in tracks. The problem of statistical dynamics is solved. As an output process, a Laplace image is drawn for the hourly fuel consumption of the tractor engine. As an input process, a Laplace image is drawn for an external random action from the microprofile along the tracks. Herewith, the transfer function of the hourly fuel consumption is determined, which allows to estimate the spectral density of the tractor’s hourly consumption and the dispersion of the hourly consumption for the given microprofile of the tracks. In addition, using the correlation theory of random processes, one can estimate the mathematical expectation of the hourly fuel consumption during transport operations. In the final analysis, it is possible to solve the optimization problem. Namely, the choice of such undercarriage tires, which provide a minimum dispersion and mathematical expectation of the hourly fuel consumption of the transport unit. The situational combination comes down to the fact that an increase in the tire radius on one side increases the height of the center of gravity of the unit, which increases the hourly fuel consumption. On the other hand, an increase in the radius of the tire contributes to a reduction in the coefficient of rolling resistance of a wheel, and hence a decrease in fuel consumption. Thus, there is a problem of discrete optimization, namely, the choice of a tire design, in which the energy costs of the transport unit are minimized.
For citation: Myasishchev D.G., Shostenko D.N., Serebrennikov A.V. Fuel Consumption of a Straddle Forestry Tractor in Consideration of Stochastic Factors. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 5, pp. 145–154. DOI: 10.37482/0536-1036-2020-5-145-154

Keywords: straddle tractor, microprofile, fuel consumption, transfer function, optimization.

Поступила 13.12.19 / Received on December 13, 2019