Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425
Тел.: 8(8182) 21-61-18 архив |
А.Г. Черных, Е.В. Данилов, П.С. Коваль Рубрика: Механическая обработка древесины Скачать статью (pdf, 1.9MB )УДК539.4:539.5DOI:10.37482/0536-1036-2020-4-157-167АннотацияПрименение когтевых шайб в нагельных соединениях позволяет увеличить несущую способность и жесткость узлов. Вместе с тем совместная работа когтевых шайб и нагелей в конструкциях из современных материалов изучена недостаточно. В работе приводятся основные недостатки существующих методик расчета таких соединений. Представлены дифференциальные уравнения, моделирующие поведение нагельного соединения с когтевыми шайбами с учетом возможных изменений форм когтей, влажности древесины, длительности действия нагрузки. Нагель и коготь шайбы описываются уравнениями для балок, лежащих на упруго-вязком основании, с использованием ядра уравнения K(τ, t), отражающего нелинейность факторов, влияющих на деформации соединителя. Приведены уравнения деформации нагеля, которые предлагается решать путем разложения в ряд методом Бубнова–Галеркина. Полученные выражения объединяются в одном уравнении с использованием функций Хэвисайда. Также представлены уравнения деформирования, которые записываются с учетом возможного смещения когтя по двум ортогональным направлениям. Приводятся выражения, позволяющие перейти от расчета когтей шайбы и нагеля к определению общей несущей способности и жесткости узла. Для адекватного моделирования поведения элементов соединения при достижении пластической стадии учитывается возможность образования пластических шарниров за счет изменения граничных условий. В статье приводится методика определения теоретических смещений и линейной жесткости соединения. Уравнения рассчитываются с использованием зависимостей, полученных экспериментальным путем. В ходе решения уравнений можно установить значения линейной жесткости. Данные значения сравниваются с экспериментальными, полученными ранее, для оценки адекватности предложенных решений. Распределение теоретических и экспериментальных данных обладает средней сходимостью 91 %, что подтверждает справедливость представленной методики определения жесткости нагельных соединений в LVL с когтевыми шайбами. Предлагаемая методика может быть рекомендована для более точного расчета деревянных конструкций по прочности и жесткости, что позволит снизить их материалоемкость и повысить надежность.Сведения об авторахА.Г. Черных, д-р техн. наук, зав. каф.Е.В. Данилов, ст. преподаватель; ORCID: https://orcid.org/0000-0002-8919-4600 П.С. Коваль, ст. преподаватель Санкт-Петербургский государственный архитектурно-строительный университет, ул. 2-я Красноармейская, Санкт-Петербург, Россия, 190005; e-mail: chagrig@lan.spbgasu.ru, sleepme@mail.ru, pkoval@lan.spbgasu.ru Ключевые словакогтевые шайбы, LVL, деревянные конструкции, жесткость, соединенияДля цитированияЧерных А.Г., Данилов Е.В., Коваль П.С. Расчет жесткости соединений конструкций из LVL с когтевыми шайбами // Изв. вузов. Лесн. журн. 2020. № 4. С. 157–167. DOI: 10.37482/0536-1036-2020-4-157-167Литература1. Глухих В.Н., Черных А.Г., Данилов Е.В. Деревянные конструкции с применением когтевых шайб и учетом начальных напряжений древесины. СПб.: СПбГАСУ, 2018. 284 с. [Glukhikh V.N., Chernykh A.G., Danilov E.V. Wooden Structures Using Claw Washers and Taking Into Account the Initial Stresses of Wood. Saint Petersburg, SPbGASU Publ., 2018. 284 p.].2. Данилов Е.В. Исследование длительной прочности LVL при смятии цилиндрическим штампом // Вестн. гражд. инж. 2014. № 4(45). С. 38–42. [Danilov E.V. Investigation of Long-Term LVL Strength in Compression by a Cylindric Stamp. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers], 2014, no. 4(45), pp. 38–42]. 3. Данилов Е.В. Исследование кратковременной прочности LVL при смятии треугольным штампом // Вестн. гражд. инж. 2014. № 1(42). С. 28–33. [Danilov E.V. Research of the Short-Term Strength of LVL in Compression by a Triangular Plate. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers], 2014, no. 1(42), pp. 28–33]. 4. Данилов Е.В. Определение линейной жесткости нагельных соединений с когтевыми шайбами в брусе LVL // Вестн. гражд. инж. 2017. № 2(61). С. 81–85. [Danilov E.V. Determination of Linear Stiffness of Dowel Joints with Claw Rings in the LVL Beam. Vestnik grazhdanskikh inzhenerov [Bulletin of Civil Engineers], 2017, no. 2(61), pp. 81–85]. DOI: 10.23968/1999-5571-2017-14-2-81-85 5. Дмитриев П.А. Исследование длительной несущей способности соединений деревянных элементов на стальных цилиндрических нагелях // Изв. вузов. Строительство и архитектура. 1973. № 5. С. 28–35. [Dmitriyev P.A. Studying the LongTerm Bearing Capacity of Wooden Connections on Steel Cylindrical Dowel Pins. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of Higher Educational Institutions. Construction], 1973, no. 5, pp. 28–35]. 6. Дмитриев П.А., Стрижаков Ю.Д. Исследование прочности древесины на смятие в отверстии поперек волокон при действии кратковременной и длительной нагрузок // Изв. вузов. Строительство и архитектура. 1967. № 7. С. 28–35. [Dmitriyev P.A., Strizhakov Yu.D. Studying the Bearing Strength of Wood in the Holes against the Grain under the Action of Temporary and Steady Loads. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of Higher Educational Institutions. Construction], 1967, no. 7, pp. 28–35]. 7. Дмитриев П.А., Стрижаков Ю.Д. Исследование деревянных элементов на дюбелях при действии кратковременных нагрузок // Изв. вузов. Строительство и архитектура. 1969. № 8. С. 41–49. [Dmitriyev P.A., Strizhakov Yu.D. Studying the Wooden Elements of Dowels under the Action of Temporary Loads. Izvestiya vysshikh uchebnykh zavedeniy. Stroitel’stvo i arkhitektura [News of Higher Educational Institutions. Construction], 1969, no. 8, pp. 41–49]. 8. Лабудин Б.В. Совершенствование клееных деревянных конструкций с пространственно-регулярной структурой. Архангельск: АГТУ, 2007. 267 с. [Labudin B.V. Improving Laminated Wood Structures with a Spatially Regular Structure. Arkhangelsk, ASTU Publ., 2007. 267 p.]. 9. Леннов В.Г. Индустриальные деревянные фермы на когтевых шайбах: дис. ... канд. техн. наук. Горький, 1941, 289 с. [Lennov V.G. Industrial Timber Trusses Made with the Use of Claw Washers: Cand. Eng. Sci. Diss. Gorky, 1941. 289 p.]. 10. Никитин Г.Г. Расчет нагельных соединений с учетом деформаций, развивающихся во времени: дис. … канд. техн. наук. Л., 1964. 192 с. [Nikitin G.G. Calculation of Dowel Connections with Allowances Made for Deformations Developing in Time: Cand. Eng. Sci. Diss. Leningrad, 1964. 192 p.]. 11. Попов Е.В., Столыпин Д.А., Лабудин Б.В., Мелехов В.И. Напряженнодеформированное состояние панелей на деревянном каркасе с различными вариантами крепления обшивки // Актуальные направления научных исследований XXI века: теория и практика. 2016. Т. 4, № 5-2(25-2). С. 133-139. [Popov E.V., Stolypin D.A., Labudin B.V., Melekhov V.I. Stress-Strain State of Panels on a Wooden Frame with Different Variants Joints of Trim. Aktual’nyye napravleniya nauchnykh issledovaniy XXI veka: teoriya i praktika, 2016, vol. 4, no. 5-2(25-2), pp. 133-139]. 12. Пуртов В.В., Павлик А.В. Расчет в программе ANSYS деревянных конструкций с крепежными элементами повышенной несущей способности // VII Междунар. симп. «Актуальные проблемы компьютерного моделирования конструкций и сооружений (APCSCE 2018)» (Новосибирск, 1–8 июля 2018 г.). Новосибирск: НГАСУ (Сибстрин), 2018. С. 72. [Purtov V.V., Pavlik A.V. Calculation in the ANSYS Program of Wooden Structures with Fasteners of Increased Bearing Capacity. Proceedings of the VII International Symposium “Actual Problems of Computational Simulation in Civil Engineering (APCSCE 2018)”, Novosibirsk, July 1–8, 2018. Novosibirsk, NSUACE (SIBSTRIN) Publ., 2018, p. 72]. 13. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с. [Rabotnov Yu.N. Creeping of Structural Elements. Moscow, Nauka Publ., 1966. 752 p.]. 14. СтАДД-3.2–2011. Деревянные конструкции. Соединения деревянных элементов с использованием зубчатых пластин. СПб., 2012. 59 с. [Association Standard of Wooden House Construction StADD-3.2.–2011. Wooden Structures. Joining Wooden Elements Using Connector Plates. Saint Petersburg, 2012. 59 p.]. 15. Шешукова Н.В. Несущая способность и деформативность нагельных соединений деревянных конструкций при циклическом нагружении: дис. ... канд. техн. наук. СПб., 2001, 152 с. [Sheshukova N.V. Bearing Capacity and Deformability of the Dowel Connections of Wooden Structures when Subjected to Cyclic Loadings: Cand. Eng. Sci. Diss. Saint Petersburg, 2001. 152 p.]. 16. Blass H.J., Aune P., Choo B.S., Gorlacher R., Griffiths D.R., Hilson B.O. et al. Timber Engineering STEP 1: Basis of Design, Material Properties, Structural Components and Joints. Almere, Netherlands, Centrum Hout, 1995. 300 p. 17. Blass H.J., Schlager M. Trial Calculations for Determination of the LoadCarrying Capacity of Joints with Bulldog Connectors. CEN/TC 124/WG4 N23, 1993. 6 p. 18. Blaß J.H., Ehlbeck J., Schlager M. Characteristic Strength of Tooth-Plate Connector Joints. Holz als Roh und Werkstoff [European Journal of Wood and Wood Products], 1993, vol. 51, pp. 395–399. DOI: 10.1007/BF02628236 19. Eurocode 5: Design of Timber Structures. Part: General Rules and Rules for Buildings. ENV 1995-1-1. Brussels, CEN, 1993. 133 p. 20. Hirashima Y. Lateral Resistance of Timber Connector Joints Parallel to Grain Direction. Proceedings of the International Engineering Conference. Tokyo, 1990, vol. 1, pp. 254–261. 21. Lißner K., Rug W., Steinmetz D. DIN 1052:2008Ǧ12 Neue Grundlagen für Entwurf, Berechnung und Bemessung von Holzbauwerken – Teil 5(2): Aussteifungen von Holztragwerken (Fortsetzung aus Heft 7/09 und Schluss). Bautechnik, 2009, vol. 86, iss. 8, 490–505. DOI: 10.1002/bate.200910051 22. Mettem C.J., Page A.V. Davis G. Validatory Tests and Proposed Design Formulae for the Load-Carrying Capacity of Toothed-Plate Connectored Joints. Papers of the 26th Meeting of the Working Commission W18 – Timber Structures, Athens, GA, USA, August, 1993. Germany, Universität Karlsruhe, 1994, CIB-W18 Paper 26-7-2. 25 p. 23. Standard NEN 3852:1973 nl. Technische grondslagen voor de berekening van bouwconstructies – TGB 1972 – Hout – Houtconstructies [Regulations for the Calculation of Building Structures – Timber Structures]. Netherlands, 1973. 131 p. Ссылка на английскую версию:Stiffness Analysis of Connections of LVL Structures with Claw Washers
STIFFNESS ANALYSIS OF CONNECTIONS OF LVL STRUCTURES WITH CLAW WASHERS A.G. Chernykh, Doctor of Engineering, Head of Department E.V. Danilov, Senior Lecturer; ORCID: https://orcid.org/0000-0002-8919-4600 P.S. Koval, Senior Lecturer Saint Petersburg State University of Architecture and Civil Engineering, ul. 2-ya Krasnoarmeyskaya, 4, Saint Petersburg, 190005, Russian Federation; e-mail: chagrig@lan.spbgasu.ru, sleepme@mail.ru, pkoval@lan.spbgasu.ru The use of claw washers in dowel connections allows to increase the bearing capacity and stiffness of joints. However, joint action of claw washers and dowels in the structures of advanced materials is studied insufficiently. The paper presents the key failures of existing methods for calculating such connections. Differential equations, that simulate the behavior of a dowel connection with claw washers taking into account the possible changes in the shape of claws, wood moisture content and the duration of loading, are presented. Washer dowel and claw are followed the equations for beams secured on a visco-elastic base, using the equation kernel K(τ,t), which reflects the nonlinearity of the factors affecting the deformation of a connection. The dowel deformation equations are given, which are proposed to be solved by the Bubnov-Galerkin method. The obtained expressions are united into a single equation using the Heaviside step functions. The deformation equations are presented as well. They are written taking into account the virtual displacement of a claw in two orthogonal directions. The expressions allow to pass from calculation of washer claws and a dowel to determination the total bearing capacity and joint stiffness. The possibility of plastification due to the changes in boundary conditions is considered for adequate simulation of connection components behavior upon reaching the plastic stage. The article provides a methodology for determining the theoretical displacements and linear stiffness of a connection. The equations are calculated using dependences available from experiments. In the course of solving the equations, it is possible to determine the values of linear stiffness. These values are compared with the experimental data received earlier to assess the adequacy of the obtained solutions. The distribution of theoretical and experimental data have an average convergence of 91 %, which confirms the validity of the presented methodology for determining the stiffness of dowel connections in LVL with claw washers. The proposed methodology can be recommended for more precise calculation of wooden structures in strength and stiffness, which will reduce their material consumption and enhence reliability. For citation: Chernykh A.G., Danilov E.V., Koval P.S. Stiffness Analysis of Connections of LVL Structures with Claw Washers. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 4, pp. 157–167. DOI: 10.37482/0536-1036-2020-4-157-167 Keywords: claw washers, LVL, wooden structures, stiffness, connections. Поступила 30.08.19 / Received on August 30, 2019 |