Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Рост и развитие пыльцевой трубки можжевельника обыкновенного (Juniperus communis): роль ядра клетки трубки

Версия для печати

М.В. Сурсо, Д.Г. Чухчин

Рубрика: Лесное хозяйство

Скачать статью (pdf, 2.3MB )

УДК

582.47:58.085:581.162.41

DOI:

10.37482/0536-1036-2020-2-20-34

Аннотация

Предпринята попытка на примере можжевельника обыкновенного выяснить функциональное значение ядра клетки трубки и его связь со структурами пыльцевой трубки у голосеменных растений. Пыльцевые трубки можжевельника в культуре in vitro изучались методами световой микроскопии (проходящий свет, флуоресценция) и инфракрасной Фурье-спектроскопии. Дано краткое описание процесса роста и развития пыльцевых трубок можжевельника. Опыты по ферментативному разрушению стенки пыльцевой трубки позволили выявить взаимосвязь генеративного ядра с протопластом, ассоциированным с ядром клетки трубки. Установлено, что генеративное ядро довольно прочно связано с протопластом ядра клетки трубки силой поверхностного натяжения внутренних мембран. Доказано, что протопласт и оба ядра некоторое время сохраняют нативность вне тела трубки после лизиса ее кончика. Однако ни генеративное ядро, ни ядро клетки трубки не могут самостоятельно функционировать вне протопласта пыльцевой трубки. Микрофибриллы актинового цитоскелета распределены во внутреннем объеме трубки неравномерно, бо́льшая их часть сконцентрирована в центральной части трубки и ассоциирована с ядром клетки трубки и протопластом. В составе пластид преобладают лейкопласты, в основном это амилопласты, бо́льшая часть которых сконцентрирована вокруг ядра клетки трубки. Протопласт содержит бо́льшое количество митохондрий. Лизосомы распределены по всему объему пыльцевой трубки более или менее равномерно, однако значительная их часть, особенно у активно растущих трубок, скапливается вокруг ядра клетки трубки и вблизи кончика трубки. Использование в качестве маркера дейтерия позволило установить последовательность синтеза и локализацию синтезируемых веществ в процессе роста пыльцевой трубки. Повышенное содержание дейтерия наблюдалось в зоне протопласта, ассоциированного с ядром клетки трубки. На основе новых экспериментальных данных высказано предположение, что, возможно, ядро клетки трубки контролирует синтез органических веществ и их распределение в теле трубки. Вероятно, ядро клетки трубки способствует ее полярному росту и ориентирует во времени и пространстве рост кончика трубки in vivo.
Финансирование: Работа выполнена при поддержке РФФИ, проект № 18-04-00056. Образцы пыльцы собраны при проведении экспедиционных работ в рамках ФНИР по государственному заданию ФИЦКИА РАН (тема №0409-2019-0039), № гос. регистрации – АААА-А18-118011690221-0.
Благодарность: Исследования проведены с использованием оборудования ЦКП НО «Арктика» Северного (Арктического) федерального университета им. М.В. Ломоносова.

Сведения об авторах

М.В. Сурсо1, д-р с.-х. наук; ResearcherID: J-2197-2018, ORCID: https://orcid.org/0000-0001-7482-9848
Д.Г. Чухчин2, канд. техн. наук, проф.; ResearcherID: O-9487-2015, ORCID: https://orcid.org/0000-0003-3250-8469
1Федеральный исследовательский центр комплексного изучения Арктики РАН, наб. Северной Двины, д. 23, г. Архангельск, Россия, 163000; e-mail: surso@fciarctic.ru
2Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163000; e-mail: dimatsch@mail.ru

Ключевые слова

можжевельник, пыльцевая трубка, ядро клетки трубки, инфракрасная спектрометрия, дейтерий, ферментативный гидролиз

Для цитирования

Сурсо М.в., Чухчин Д.Г. Рост и развитие пыльцевой трубки можжевельника обыкновенного (Juniperus communis): роль ядра клетки трубки // Изв. вузов. лесн. журн. 2020. № 2. с. 20–34. DOI: 10.37482/0536-1036-2020-2-20-34

Литература

1. Bağcioğlu M., Kohler A., Seifert S., Kneipp J., Zimmermann B. Monitoring of Plant–Environment Interactions by High-Throughput FTIR Spectroscopy of Pollen. Methods in Ecology and Evolution, 2017, no. 8, iss. 7, pp. 870–880. DOI: 10.1111/2041-210X.12697
2. Battey N.H., James N.C., Greenland A.J., Brownlee C. Exocytosis and Endocytosis. The Plant Cell, 1999, vol. 11, pp. 643–659. DOI: 10.1105/tpc.11.4.643
3. Buta E., Cantor M., Ştefan R., Pop R., Mitre I., Buta M., Sestraș R.E. FT-IR Characterization of Pollen Biochemistry, Viability, and Germination Capacity in Saintpaulia H. Wendl. Genotypes. Journal of Spectroscopy, 2015, vol. 2015, art. 706370. 7 p. DOI: 10.1155/2015/706370
4. Camacho L., Malhó R. Endo/Exocytosis in the Pollen Tube Apex is Differentially Regulated by Ca2+ and GTPases. Journal of Experimental Botany, 2003, no. 54, iss. 380, pp. 83–92. DOI: 10.1093/jxb/erg043
5. Chen T., Wu X., Chen Y., Li X., Huang M., Zheng M., Baluška F., Šamaj J., Lin J. Combined Proteomic and Cytological Analysis of Ca2+-Calmodulin Regulation in Picea meyeri Pollen Tube Growth. Plant Physiology, 2009, vol. 149, pp. 1111–1126. DOI: 10.1104/pp.108.127514
6. Chen Y., Chen T., Shen S., Zheng M., Guo Y., Lin J., Baluška F., Šamaj J. Differential Display Proteomic Analysis of Picea meyeri Pollen Germination and Pollen-Tube Growth after Inhibition of Actin Polymerization by Latrunculin B. The Plant Journal, 2006, vol. 47, iss. 2, pp. 174–195. DOI: 10.1111/j.1365-313X.2006.02783.x
7. Chichiriccò G., Pacini E. Cupressus arizonica Pollen Wall Zonation and in vitro Hydration. Plant Systematics and Evolution, 2008, vol. 270, iss. 3-4, pp. 231–242. DOI: 10.1007/s00606-007-0610-6
8. Chichiriccò G., Spanò L., Torraca G., Tartarini A. Hydration, Sporoderm Breaking and Germination of Cupressus arizonica Pollen. Plant Biology, 2009, vol. 11, iss. 3, pp. 359–368. DOI: 10.1111/j.1438-8677.2008.00134.x
9. Depciuch J., Kasprzuk I., Drzymała E., Parlinska-Wojtan M. Identification of Birch Pollen Species Using FTIR Spectroscopy. Aerobiologia, 2018, vol. 34, iss. 4, pp. 525–538. DOI: 10.1007/s10453-018-9528-4
10. Diavanshir K., Fechner G.H. Pollen Germination and Pollen Tube Growth of Juniperus from Autumn and Winter Collections. Silvae Genetica, 1975, vol. 24, iss. 1, pp. 26–29.
11. Duhoux E. Structural Growth of the Wall of the Pollen Grain of Juniperus communis (Cupressaceae), Growth in vitro during the Hydration Phase. Comptes Rendus Des Seanses Hebdomadaires De LʼAcademie Des Sciences, 1972, vol. 274, no. 20, pp. 2767–2770.
12. Duhoux E. Formation of the Cell Wall of the Pollen Tube during Germination of Pollen in Juniperus communis Growth in vitro. Comptes Rendus Des Seanses Hebdomadaires De LʼAcademie Des Sciences, 1972, vol. 274, no. 24, pp. 3238–3241.
13. Duhoux E. The Division of the Reproductive Cell and the Release of Its Products in the Pollen Tubes of Juniperus communis and Cupressus arizonica. Revue Generale De Botanique, 1974, vol. 81, no. 962/963/964, pp. 193–204.
14. Duhoux E. Mechanism of Exine Rupture in Hydrated Taxoid Type of Pollen. Grana, 1982, vol. 21, iss. 1, pp. 1–7. DOI: 10.1080/00173138209427673
15. Feijó J.A., Malhó R., Pais M.S.S. A Cytochemical Study on the Role of ATPases during Pollen Germination in Agapanthus umbelatus Lʼher. Sexual Plant Reproduction, 1992, vol. 5, iss. 2, pp. 138–145. DOI: 10.1007/BF00194873
16. Feijó J.A., Sainhas J., Hackett G.R., Kunkel J.G., Hepler P.K. Growing Pollen Tubes Possess a Constitutive Alkaline Band in the Clear Zone and a Growth-Dependent Acidic Tip. Journal of Cell Biology, 1999, vol. 144, no. 3, pp. 483–496. DOI: 10.1083/jcb.144.3.483
17. Fernando D.D., Lazzaro M.D., Owens J.N. Growth and Development of Conifer Pollen Tubes. Sexual Plant Reproduction, 2005, vol. 18, iss. 4, pp. 149–162. DOI: 10.1007/s00497-005-0008-y
18. Geitmann A., Snowman B.N., Emons A.M.C., Franklin-Tong V.E. Alterations in the Actin Cytoskeleton of Pollen Tubes are Induced by the Self-Incompatibility Reaction in Papaver rhoeas. The Plant Cell, 2000, vol. 12, pp. 1239–1251. DOI: 10.1105/tpc.12.7.1239
19. Holdaway-Clarke T.L., Hepler P.K. Control of Pollen Tube Growth: Role of Ion Gradients and Fluxes. New Phytologist, 2003, vol. 159, iss. 3, pp. 539–563. DOI: 10.1046/j.1469-8137.2003.00847.x
20. Justus C.D., Anderhang P., Goins J.L., Lazzaro M.D. Microtubules and Microfilaments Coordinate to Direct a Fountain Streaming Pattern in Elongating Conifer Pollen Tube Tips. Planta, 2004, vol. 219, iss. 1, pp. 103–109. DOI: 10.1007/s00425-003-1193-2
21. Malho R., Read N.D., Trewavas A.J., Pais M.S. Calcium Channel Activity during Pollen Tube Growth and Reorientation. The Plant Cell, 1995, vol. 7, pp. 1173–1184. DOI: 10.1105/tpc.7.8.1173 3
22. Mascarenhas J.P. Molecular Mechanisms of Pollen Tube Growth and Differentiation. The Plant Cell, 1993, vol. 5, pp. 1303–1314. DOI: 10.1105/tpc.5.10.1303
23. Messerli M.A., Robinson K.R. Ionic and Osmotic Disruptions of the Lily Pollen Tube Oscillator: Testing Proposed Models. Planta, 2003, vol. 217, iss. 1, pp. 147–157. DOI: 10.1007/s00425-003-0972-0
24. Moscatelli A., Cresti M. Pollen Germination and Pollen Tube Growth. Current Trends in the Embryology of Angiosperms. Ed. by S.S. Bhojwani, W.-Y. Soh. Dordrecht, Springer, 2001, pp. 33–65. DOI: 10.1007/978-94-017-1203-3_3
25. Moutinho A., Love J., Trewavas A.J., Malhó R. Distribution of Calmodulin Protein and mRNA in Growing Pollen Tubes. Sexual Plant Reproduction, 1998, vol. 11, iss. 3, pp. 131–139. DOI: 10.1007/s004970050130
26. Pappas C.S., Tarantilis P.A., Harizanis P.C., Polissiou M.G. New Method for Pollen Identification by FT-IR Spectroscopy. Applied Spectroscopy, 2003, vol. 57, iss. 1, pp. 23–27. DOI: 10.1366/000370203321165160
27. Parre E., Geitmann A. Pectin and the Role of the Physical Properties of the Cell Wall in Pollen Tube Growth of Solanum chacoense. Planta, 2005, vol. 220, iss. 4, pp. 582–592. DOI: 10.1007/s00425-004-1368-5
28. Parton R.M., Fisher-Parton S., Watahiki M.K., Trewavas A.J. Dynamics of the Apical Vesicle Accumulation and the Rate of Growth are Related in Individual Pollen Tubes. Journal of Cell Science, 2001, vol. 114, iss. 14, pp. 2685–2695.
29. Šamaj J., Baluška F., Voigt B., Schlicht M., Volkmann D., Menzel D. Endocytosis, Actin Cytoskeleton, and Signaling. Plant Physiology, 2004, vol. 135, pp. 1150–1161. DOI: 10.1104/pp.104.040683
30. Southworth D. Pollen Exine Substructure. III. Juniperus communis. Canadian Journal of Botany, 1986, vol. 64, iss. 5, pp. 983–987. DOI: 10.1139/b86-132
31. Southworth D. Sperm and Generative Cell. Current Trends in the Embryology of Angiosperms. Ed. by S.S. Bhojwani, W.Y. Soh. Dordrecht, Springer, 2001, pp. 17–32. DOI: 10.1007/978-94-017-1203-3_2
32. Sowa S., Connor K.F. Biochemical Changes during Pollen Germination Measured in vivo by Infrared Spectroscopy. Plant Science, 1995, vol. 105, iss. 1, pp. 23–30. DOI: 10.1016/0168-9452(94)04036-G
33. Surso M. Pollination and Pollen Germination in Common Juniper (Juniperus communis: Cupressaceae). Arctic Environmental Research, 2018, vol. 18, no. 4, pp. 162–174. DOI: 10.3897/issn2541-8416.2018.18.4.162
34. Takaso T., Owens J.N. Significance of Exine Shedding in Cupressaceae-Type Pollen. Journal of Plant Research, 2008, vol. 121, iss. 1, art. 83. DOI: 10.1007/s10265-007-0135-7
35. Vidali L., McKenna S.T., Hepler P.K. Actin Polymerization is Necessary for Pollen Tube Growth. Molecular Biology of the Cell, 2017, vol. 12, no. 8, pp. 2534–2545. DOI:10.1091/mbc.12.8.2534
36. Wang B.-Y., Su J.-R., Fernando D.D., Yang Z.-H., Zhang Z.-J., Chen X.-M., Zhang Y.-P. Development of the Male Reproductive Structures in Taxus yunnanensis. Plant Systematics and Evolution, 2008, vol. 276, iss. 1-2, art. 51. DOI: 10.1007/s00606-008-0079-y
37. Wang Q., Lu L., Wu X., Li Y., Lin J. Boron Influences Pollen Germination and Pollen Tube Growth in Picea meyeri. Tree Physiology, 2003, vol. 23, iss. 5, pp. 345–351. DOI: 10.1093/treephys/23.5.345
38. Wang X., Teng Y., Wang Q., Li X., Sheng X., Zheng M., Šamaj J., Baluška F., Lin J. Imaging of Dynamic Secretory Vesicles in Living Pollen Tubes of Picea meyeri Using Evanescent Wave Microscopy. Plant Physiology, 2006, vol. 141, pp. 1591–1603. DOI: 10.1104/pp.106.080168
39. Wu X., Chen T., Zheng M., Chen Y., Teng N., Šamaj J., Baluška F., Lin J. Integrative Proteomic and Cytological Analysis of the Effects of Extracellular Ca2+ Influx on Pinus bungeana Pollen Tube Development. Journal of Proteome Research, 2008, vol. 7, pp. 4299–4312. DOI: 10.1021/pr800241u
40. Zhang L., Hao H., Wang Q., Fang K., Hou Z., Lin J. The Localization of Rac GTPase in Picea willsonii Pollen Tubes Implies Roles in Tube Growth and the Movement of the Tube Nucleus and Sperm Cells. Plant Science, 2007, vol. 172, iss. 6, pp. 1210–1217. DOI: 10.1016/j.plantsci.2007.02.011
41. Zimmermann B. Chemical Characterization and Identification of Pinaceae Pollen by Infrared Microspectroscopy. Planta, 2018, vol. 247, iss. 1, pp. 171–180. DOI: 10.1007/s00425-017-2774-9

GROWTH AND DEVELOPMENT OF POLLEN TUBES IN COMMON JUNIPER (Juniperus communis): THE ROLE OF THE TUBE CELL NUCLEUS

M.V. Surso1, Doctor of Agriculture; ResearcherID: J-2197-2018, ORCID: https://orcid.org/0000-0001-7482-9848
D.G. Chukhchin2, Candidate of Engineering, Prof.; ResearcherID: O-9487-2015, ORCID: https://orcid.org/0000-0003-3250-8469
1Federal Center for Integrated Arctic Research of the Russian Academy of Sciences, Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163000, Russian Federation; e-mail: surso@fciarctic.ru
2Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163000, Russian Federation; e-mail: dimatsch@mail.ru

In this work we have tried to explain the functional value of the tube cell nucleus and its relationship with the structures of the pollen tube on the example of juniper. Juniper pollen tubes were studied in vitro by the methods of light microscopy (transmitted light, fluorescence) and Fourier-transform infrared (FTIR) spectroscopy. A brief description of the growth and development processes of juniper pollen tubes is given. The experiments on the enzymatic destruction of the pollen tube wall revealed the relation between the generative nucleus and the protoplast associated with the tube cell nucleus. The generative nucleus is quite firmly connected with the protoplast of the tube cell nucleus by means of the surface tension of internal membranes. It was proven that the protoplast and the both nuclei save their integrity outside the tube body. That is, they retain their viability outside the tube body for some time after lysis the tube tip. However, both the generative nucleus and the tube cell nucleus cannot function independently outside the protoplast of the pollen tube. Microfibrils of the actin cytoskeleton are distributed irregularly inside the tube. Most of them are concentrated in the central part of the tube and associated with the tube cell nucleus and protoplast. Leucoplasts predominate in the composition of plastids. The majority of them are amyloplasts, the better part of which is concentrated around the tube cell nucleus and protoplast. Protoplast contains a large number of mitochondria. Lysosomes are distributed over the entire volume of the pollen tube more or less regularly. However, a significant part of lysosomes, especially in actively growing tubes, accumulates around the tube cell nucleus and near the tube tip. The use of deuterium as a marker allowed to establish the sequence of synthesis and localization of synthesized substances during the pollen tube growth. The increased deuterium content was observed in the zone of the protoplast associated with the tube cell nucleus. The obtained experimental data allowed to suggest that the tube cell nucleus likely controls the synthesis of organic substances and their distribution in the tube body. Probably, the tube cell nucleus promotes its polar growth and orients the growth of the tube tip in vivo in time and space.
For citation: Surso M.V., Chukhchin D.G. Growth and Development of Pollen Tubes in Common Juniper (Juniperus communis): The Role of the Tube Cell Nucleus. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 2, pp. 20–34. DOI: 10.37482/0536-1036-2020-2-20-34
Funding: The study was carried out with the financial support from the Russian Foundation for Basic Research within the framework of the research project No. 18-04-00056. Pullen samples were collected during the expedition work within the framework of the research on the state assignment of the Russian Academy of Sciences (topic No. 0409-2019-0039), state registration No. АААА-А18-118011690221-0.
Acknowledgments: This research was performed using the equipment of the Core Facility Center “Arktika” of the Northern (Arctic) Federal University named after M.V. Lomonosov.

Keywords: juniper, pollen tube, tube cell nucleus, infrared spectrometry, deuterium, enzymatic hydrolysis.

Поступила 05.06.19 / Received on June 5, 2019