Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Упруго-релаксационные свойства древесины лиственницы и их роль при получении древесных и древесно-угольных брикетов

Версия для печати

А.А. Пекарец, О.А. Ерохина, В.В. Новожилов, Ю.Г. Мандре, Э.Л. Аким

Рубрика: Краткие сообщения и обмен опытом

Скачать статью (pdf, 0.8MB )

УДК

676.038.14+676.038.4

DOI:

10.37482/0536-1036-2020-1-200-208

Аннотация

Переработка опилок, на долю которых приходится 10...12 % от объема перерабатываемого древесного сырья в продукцию с высокой добавленной стоимостью, является одним из направлений биорефайнинга древесины. Это предпосылка их переработки в биотопливо второго поколения – остеклованные брикеты, а также карбонизированные брикеты на их основе. Учитывая специфические особенности релаксационных переходов на стадиях получения древесных и древесно-угольных брикетов, изучены релаксационные свойства древесины лиственницы и проанализирована их роль в технологическом процессе, осуществляемом при создании биотоплива нового поколения с заданным комплексом эксплуатационных свойств. Рассмотрена взаимосвязь направленного изменения релаксационного состояния полимерных компонентов древесины (лигнина, целлюлозы, гемицеллюлоз) и технологических параметров процесса. В исходной древесине и древесных опилках целлюлоза и гемицеллюлозы находятся в высокоэластическом состоянии, что подтверждается полученными экспериментальными данными. Для измельчения древесных опилок до порошкообразного состояния при минимальном расходе энергии целесообразно обеспечить перевод полимерных компонентов древесины ниже температуры хрупкости, т. е. осуществить сушку древесины до минимально-возможной остаточной влажности. Последующее увлажнение паром до влажности 3...4 % придает системе экструдируемость за счет образования на поверхности древесных частиц гемицеллюлозного геля.

Сведения об авторах

А.А. Пекарец1, аспирант
О.А. Ерохина2, зав. лаб.
В.В. Новожилов2, магистр
Ю.Г. Мандре2, д-р техн. наук
Э.Л. Аким2, д-р техн. наук, проф.
1ООО «Лесная технологическая компания», ул. Звездочка, д. 1, пос. Качуг, Иркутская область, Россия, 666210; e-mail: esrplus@yandex.ru
2Санкт-Петербургский государственный университет промышленных технологий и дизайна, ул. Ивана Черных, д. 4, Санкт-Петербург, Россия, 198095; e-mail: art-stones@bk.ru

Ключевые слова

биорефайнинг древесины, древесина лиственницы, биотопливо, древесные брикеты, древесно-угольные брикеты, пеллеты, физико-механические свойства, релаксационные свойства

Для цитирования

Пекарец А.А., Ерохина О.А., Новожилов В.В., Мандре Ю.Г., Аким Э.Л. Упруго-релаксационные свойства древесины лиственницы и их роль при получении древесных и древесно-угольных брикетов // Изв. вузов. Лесн. журн. 2020. № 1. С. 200–208. DOI: 10.37482/0536-1036-2020-1-200-208

Литература

1. Аким Э.Л., Коваленко М.В., Рассказова Н.Я., Васильев В.В., Ерохина О.А., Бучельникова Я.В., Мандре Ю.Г. Проект «Лиственница». Программно-аппаратный комплекс для изучения свойств древесины лиственницы // Целлюлоза. Бумага. Картон. 2011. № 5. С. 24–28. [Akim E.L., Kovalenko M.V., Rasskazova N.Ya., Vasil’yev V.V., Erokhina O.A., Buchel’nikova Y.V. The Larch Project. Hardware and Software Package for Studying the Propertiesof Larch Wood. Tsellyuloza. Bumaga. Karton [Pulp. Paper. Board], 2011, no. 5, pp. 24–28].
2. Аким Э.Л., Мандре Ю.Г., Пекарец А.А. Изменение релаксационного состояния полимерных компонентов древесины при проведении ее высокотемпературного биорефайнинга // Химические волокна. 2019. № 3. С. 14–18. [Akim E.L., Mandre Yu.G., Pekarets A.A. Change in the Relaxation State of Polymeric Components of Wood during High Temperature Biorefining. Khimicheskiye volokna [Fibre Chemistry], 2019, no. 3, pp. 14–18].
3. Виноградов Н.В. Компрессионные свойства древесины лиственницы какоснова отжимной технологии извлечения арабиногалактана: автореф. ... канд. техн. наук. СПб., 2019. 16 с. [Vinogradov N.V. Compression Properties of Larch Wood as the Basis for Squeezing Technology of Arabinogalactan Extraction: Cand. Eng. Sci. Diss. Abs. Saint Petersburg, SPbGUPTD, 2019.16 p.].
4. Голубев В.А. Обоснование и совершенствование способов энергетического использования растительных отходов: автореф. дис. ... канд. техн. наук. Барнаул, 2014. 16 с. [Golubev V.A. Substantiation and Improvement of Methods for the Energy Use of Vegetation Residues: Cand. Eng. Sci. Diss. Abs. Barnaul, 2014. 16 p.].
5. Кашин Е.М. Разработка газогенераторов роторного исполнения для древесного топлива: автореф. дис. ... канд. техн. наук. Казань, 2019.16 с. [Kashin E.M. Development of Rotary Gas Generatorsfor Wood Fuel: Cand. Eng. Sci. Diss. Abs. Kazan, 2019. 16 p.].
6. Лесная биоэнергетика / под ред. Ю.П. Семенова. М.: МГУЛ, 2008. 348 с. [Forest Bioenergy. Ed.byYu.P. Semenova. Moscow, MGUL Publ., 2008. 348 p.].
7. Любов В.К. Совершенствование топливно-энергетического комплекса путем повышения эффективности сжигания топлив и вовлечения в энергетический баланс отходов переработки биомассы и местноготоплива: автореф. дис. ... д-ра техн. наук. Архангельск, 2004. 44 с. [Lyubov V.K. Improving the Fuel and Energy Complex by Increasing the Efficiency of Fuel Combustion and Involving Biomass and Local Fuel Wastesinto the Energy Balance: Dr. Eng. Sci. Diss. Abs. Arkhangelsk, 2004. 44 p.].
8. Марьяндышев П.А. Совершенствование технологии энергетического использования древесного биотоплива: автореф. дис. ... канд. техн. наук. СПб., 2015. 16 с. [Mar’yandyshevP.A. Improvingthe Technology of Energy Use of Wood Biofuel: Cand. Eng. Sci. Diss. Abs., Saint Petersburg, 2015. 16 p.].
9. Мюллер О.Д., Мелехов В.И., Любов В.К., Тюрикова Т.В. Математическая модель процесса формирования древесных гранул // Изв. вузов. Лесн. журн. 2015. № 2. С. 104–122. [Myuller O.D., Melekhov V.I., Lyubov V.K., Tyurikova T.V. Mathematical Model of Wood Granules Formation. Lesnoy Zhurnal [Russian Forestry Journal], 2015, no. 2, pp. 104–122]. DOI: 10.17238/issn0536-1036.2015.2.104; URL: http://lesnoizhurnal.ru/upload/iblock/c41/1-_-myuller.pdf
10. Патент № 2596683 Российская Федерация, МПК F26B 20/00, F26B 17/10, F26B 3/10. Комплекс для непрерывной термообработки твердых мелких частиц, преимущественно дисперсных древесных материалов, и способы термообработки, реализуемые с помощью данного комплекса / Пекарец А.А.; заявитель и патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. System for Continuous Heat Treatment of Solid Fine Particles, Mainly Disperse Wood Materials and Methods of Heat Treatment, Implemented Using Said Complex. Patent RF, no. 2596683, 2016].
11. Патент № 2628602 Российская Федерация, МПК C10B 53/02. Устройство для получения древесного угля / А.А. Пекарец; патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. Wood Coal Production Device. Patent RF, no. 2628602, 2017].
12. Патент № 2653513 Российская Федерация, МПК C10L 5/44, С10L 5/40. Высококалорийные топливные брикеты из композиционного материала на основе древесных отходов (варианты) / А.А. Пекарец; патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. High-Energy Fuel Briquets from Composite Material Based on Remains of Wooden Materials (Options). Patent RF, no. 2653513, 2018].
13. Патент № 2678089 Российская Федерация, МПК C10L 5/44, С10В 47/28, С10В 49/02, В09B 3/00. Промышленный комплекс для производства древесного угля безотходным способом низкотемпературного пиролиза из брикетированных древесных отходов / А.А. Пекарец; патентообладатель ООО «ПРОМЕТЕЙ». [Pekarets A.A. Industrial Complex for the Production of Charcoal without Waste Method of LowTemperature Pyrolysis from Briquette Wood Waste. Paten tRF, no. 2678089, 2019].
14. Попова Е.И. Совершенствование технологии торрефикации вторичных древесных ресурсов: автореф. дис. ... канд. техн. наук. Архангельск, 2018. 24 с. [Popova E.I. Improving the Technology of Torrefactionof Secondary Wood Resources: Cand. Eng. Sci. Diss. Abs. Arkhangelsk, 2018. 24 p.].
15. Соболев Ю.С. Древесина как конструкционный материал. М.: Лесн. пром-сть, 1979. 249 с. [Sobolev Yu.S. Wood as a Structural Material. Moscow, Lesnaya promyshlennost’ Publ., 1979. 249 p.].
16. Akim E.L. Biorefining of Wood. Fibre Chemistry, 2016, vol. 48, iss. 3, pp. 181–190. DOI: 10.1007/s10692-016-9765-7
17. Akim E.L., Mandre Y.G., Pekarets A.A. Change in Relaxation State of Polymer Components of Wood During its High-Temperature Biorefining. Fibre Chemistry, 2019, vol. 51, iss. 3, pp. 164–169. DOI: 10.1007/s10692-019-10067-8
18. Forest Products Annual Market Review 2018–2019. New York, United Nations, 2019. 137 p. Available at: http://www.unece.org/forests/fpamr2019 (accessed 12.05.19).
19. Pekarets A.A., Mandre Y., Vinogradov N., Akim E.L. Biorefining of Larch Sawdust Producing Wood and Wood-Charcoal Briquettes: Scientific and Technological Aspects. Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, May 27–30, 2019. Lisbon, 2019, pp. 1887–1889.
20. Popp J., Lakner Z., Harangi-Rákos M., Fári M. The Effect of Bioenergy Expansion: Food, Energy and Environment. Renewable and Sustainable Energy, 2014, vol. 32, pp. 559–578. DOI: 10.1016/j.rser.2014.01.056
21. Renewable Energy – Medium-Term Market Report 2016. OECD/IEA, 2016. 281 p.
22. Thiffault E., Asikainen A., Devlin G. Comparison of Forest Biomass Supply Chains from the Boreal and Temperate Biomes. Ch. 2. Mobilisation of Forest Bioenergy in the Boreal and Temperate Biomes. Ed. by E. Thiffault, C.T. Smith, M. Junginger, J. Saddler, G. Berndes. Academic Press, 2016, pp. 10–35. DOI: 10.1016/B978-0-12-804514-5.00002-0
23. Tumuluru S.J., Wright C.T., Kenny K.L., Hess J.R. A Review on Biomass Densification Technologies for Energy Application. Idaho Falls, ID, INL, 2010. 85 p.
24. Van Dam J. The Charcoal Transition: Greening the Charcoal Value Chain to Mitigate Climate Change and Improve Local Livelihoods. Rome, FAO, 2017. 178 p.
25. Wertz J.-L., Deleu M., Coppée S., Richel A. Hemicelluloses and Lignin in Biorefineries. Boca Raton, FL, CRC Press, 2017. 330 p. DOI: 10.1201/b22136
26. Wood Energy in the ECE Region: Data, Trends and Outlook in Europe, the Commonwealth of Independent States and North America. Ed. by F.X. Aguilar. New York, United Nations, 2018.94 p. Available at: http://www.unece.org/index.php?id=48593 (accessed 12.05.19).

ELASTIC AND RELAXATION PROPERTIES OF LARCH WOOD AND THEIR ROLE IN PRODUCTION OF WOOD AND CHARCOAL BRIQUETTES

A.A. Pekarets1, Postgraduate Student
O.A. Erokhina2, Head of Laboratory
V.V. Novozhilov2, Master
Yu.G. Mandre2, Doctor of Engineering
E.L. Akim2, Doctor of Engineering, Prof.
1LLC Forest Technology Company, ul. Zvezdochka, 1, pos. Kachug, Irkutsk Region, 666210, Russian Federation; e-mail: esrplus@yandex.ru
2Higher School of Technology and Energy of the Saint Petersburg State Technological University of Plant Polymers, ul. Ivana Chernykh, 4, Saint Petersburg, 198095, Russian Federation; e-mail: art-stones@bk.ru

Processing of sawdust, which accounts for 10…12 % of the volume of processed raw wood materials in products with high added value, is one of the areas of woodbiorefining. This became a premise for sawdust processing into secondgeneration biofuel, as well as carbonized briquettes based on it. The relaxation properties of larch wood are studied and their role in the technological process carried out in creation of new generation biofuel with a given set of operational properties is analyzedtaking into account the specific features of relaxation transitions at the stages of obtaining wood and charcoal briquettes.The relationship between the directed change in the relaxation state of the wood polymer components (lignin, cellulose and hemicelluloses) and the operational parameters is considered. The experimental data findings confirm that cellulose and hemicelluloses are in a high-elastic state in the initial wood and sawdust.It is advisable to ensure that the wood polymer components are transferred below the brittle temperature, in other words, wood should be dried to the lowest possible residual moisture, in order to grind wood sawdust to a powdery state with minimum energy consumption. Subsequent steam humidification to a moisture content of 3…4 % gives the system extrusion ability due to the formation of hemicellulose gel layers on the surface.
For citation: Pekarets A.A., Erokhina O.A., Novozhilov V.V., Mandre Yu.G., Akim E.L. Elastic and Relaxation Properties of Larch Wood and Their Role in Production of Wood and Charcoal Briquettes. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 1, pp. 200–208. DOI: 10.37482/0536-1036-2020-1-200-208

Keywords: wood biorefining, larch wood, biofuel, wood briquettes, charcoalbriquettes, pellets, physical and mechanical properties, relaxation properties.

Поступила 12.05.19 / Received on May 12, 2019