Осторожно мошенники! Официально заявляем, никакие денежные средства с авторов и членов редколлегии НЕ ВЗЫМАЮТСЯ! Большая просьба игнорировать «спам-письма».

Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002

Местонахождение: Редакция «Лесной журнал», наб. Северной Двины, 17, ауд. 1425, г. Архангельск

Тел/факс: (818-2) 21-61-18
Сайт: http://lesnoizhurnal.ru/
e-mail: forest@narfu.ru


архив

Эффективность сжигания древесного топлива в водогрейных котлах КВУ-2000

Версия для печати

В.К. Любов, А.Н. Попов

Рубрика: Механическая обработка древесины

Скачать статью (pdf, 1.2MB )

УДК

662.6/9

DOI:

10.37482/0536-1036-2020-1-167-179

Аннотация

Использование возобновляемых источников энергии – одно из приоритетных направлений развития современной энергетики. К возобновляемым источникам относится биомасса древесины, большие объемы которой в лесных регионах позволяют обеспечивать энергетическую независимость. Кроме того, применение древесной биомассы в энергетике способно решать целый ряд задач: получение сравнительно дешевой энергии, утилизация побочных продуктов лесозаготовительных и деревообрабатывающих предприятий, снижение негативного воздействия на окружающую среду и др. Ввиду наличия огромных запасов древесины для Северо-Запада России актуальны вопросы рационального и эффективного использования древесных ресурсов. Современные водогрейные котлы, сжигающие древесное топливо, позволяют комплексно решать энергетические и экологические проблемы при обеспечении отопительных нагрузок потребителей. Цель работы – определение теплотехнических и экологических показателей водогрейного котлоагрегата КВУ-2000 при сжигании побочных продуктов предприятий лесопромышленного комплекса. По результатам энергетического обследования определены составляющие теплового баланса котла, выбросы газообразных веществ, твердых и сажистых частиц. Установлено, что приемлемые технико-экономические и экологические показатели КВУ-2000 обеспечиваются при сжигании древесного топлива с неоднородным гранулометрическим составом. Однако ручная регулировка расхода вторичного воздуха и отсутствие контроля концентрации кислорода в уходящих газах не дают возможности поддерживать оптимальный воздушный режим процесса горения. Отсутствие приборов контроля сопротивления золоулавливающих устройств и тепловой изоляции на всех элементах газового тракта за котлом вызывает нерациональные энергетические потери, что противоречит требованиям действующих нормативных документов. Ограниченный период эксплуатации между чистками поверхности нагрева дымогарного теплообменника предъявляет повышенные требования к резервированию установленной мощности. Устранение выявленных недостатков сможет обеспечить существенное повышение энергоэкономических показателей работы водогрейных котлов, приведет к снижению выбросов вредных веществ при сжигании биотоплив, что позволит рекомендовать их для систем теплоснабжения Северо-Арктического региона.
Благодарность: Авторы выражают благодарность Д.Г. Чухчину за выполнение исследований с использованием метода электронной растровой микроскопии.

Сведения об авторах

В.К. Любов, д-р техн. наук, проф.; ResearcherID:AAF-8949-2019, ORCID: 0000-0001-7050-1212
А.Н. Попов, канд. техн. наук, доц.; ResearcherID: N-5104-2019, ORCID: 0000-0003-0144-1513
Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; e-mail: vk.lubov@mail.ru, a.n.popov@narfu.ru

Ключевые слова

водогрейный котел, древесное топливо, вредные вещества, топка, потери тепла, коэффициент полезного действия

Для цитирования

Любов В.К., Попов А.Н. Эффективность сжигания древесного топлива в водогрейных котлах КВУ-2000 // Изв. вузов. Лесн. журн. 2020. № 1. С. 167–179. DOI: 10.37482/0536-1036-2020-1-167-179

Литература

1. Башмаков И., Мышак А. Затраты и выгоды реализации стратегий низкоуглеродного развития России: перспективы до 2050 г. // Вопр. экономики. 2014. № 8. С. 70–91. [Bashmakov I., Myshak A. Costs and Benefits of the Transition to Low-Carbon Economy in Russia: Perspectives up to 2050. Voprosy Ekonomiki, 2014, no. 8, pp. 70–91]. DOI: 10.32609/0042-8736-2014-8-70-91
2. Кокорин А. Новые факторы и этапы глобальной и российской климатической политики // Экономическая политика. 2016. Т. 11, № 1. С. 157–176. [Kokorin A.O. New Factors of the Global and Russian Climate Policy. Ekonomicheskaya Politika, 2016, vol. 11, no. 1, pp. 157–176]. DOI: 10.18288/1994-5124-2016-1-10
3. Любов В.К., Любова С.В. Повышение эффективности энергетического использования биотоплив. Архангельск: САФУ, 2017. 533 с. [Lyubov V.K., Lyubova S.V. Efficiency Improvement of the Biofuels Energy Use. Arkhangelsk, NArFU Publ., 2017. 533 p.].
4. Любов В.К., Малыгин П.В., Попов А.Н., Попова Е.И. Исследование эффективности работы водогрейного котла при сжигании биотоплив // Биотехнологии в химико-лесном комплексе: материалы междунар. науч. конф., Архангельск, 11–12 сент. 2014 г. Архангельск: САФУ, 2014. С. 201–205. [Lyubov V.K., Malygin P.V., Popov A.N., Popova E.I. Biofuel Combustion Efficiency of the Hot-Water Boiler. Biotechnologies in the Chemical and Forest Complex: Proceedings of the International Scientific Conference, Arkhangelsk, September 11–12, 2014. Arkhangelsk, NArFU, 2014, pp. 201–205].
5. Макаров И.А., Чен Х., Пальцев С.В. Последствия Парижского климатического соглашения для экономики России // Вопр. экономики. 2018. № 4. С. 76–94. [Makarov I.A., Chen H., Paltsev S.V. Impacts of Paris Agreement on Russian Economy. Voprosy Ekonomiki, 2018, no. 4, pp. 76–94]. DOI: https://doi.org/10.32609/0042-8736-2018-4-76-94
6. Мохирев А.П., Безруких Ю.А., Медведев С.О. Переработка древесных отходов предприятий лесопромышленного комплекса, как фактор устойчивого природопользования // Электрон. науч. журн. «Инж. вестн. Дона». 2015. № 2, ч. 2. С. 81. [Mokhirev A.P., Bezrukikh J.A., Medvedev S.O. Recycling of Wood Wastes of Timber Industry, as a Factor of Sustainable Resource Management. Inzhenernyy vestnik Dona [Engineering Journal of Don], 2015, no. 2, part 2, p. 81].
7. Попова Е.И., Попов А.Н., Любов В.К., Варакин Е.А. Сжигание твердых топлив в водогрейном котле Firematic 60 // Природопользование в Арктике: современное состояние и перспективы развития: сб. науч. тр. 1-й междунар. науч.-практ. конф., Якутск, 22–25 сент. 2015 г. Якутск: СВФУ, 2015. С. 464–473. [Popova E.I., Popov A.N., Lyubov V.K., Varakin E.A. Solid Fuels Combustion in the Boiler Firematic 60. Proceedings of the 1st International Scientific and Practical Conference “Nature Management in the Arctic: Current State and Development Potential”, Yakutsk, September 22–25, 2015. Yakutsk, NEFU Publ., 2015, pp. 464–473].
8. ПБ 10-574–03. Правила устройства и безопасной эксплуатации паровых и водогрейных котлов. М.: ПИО ОБТ, 2003. 215 с. [PB 10-574–03. Rules for the Construction and Safe Operation of Steam and Water Boilers. Moscow, PIO OBT Publ., 2003. 215 p.].
9. Правила технической эксплуатации электрических станций и сетей Российской Федерации / Мин-во энергетики РФ. М.: Энергосервис, 2003. 368 с. [Rules for Technical Operation of Power Plants and Grids of the Russian Federation. Moscow, Energoservis Publ., 2003. 368 p.].
10. Сафонов Г.В., Стеценко А.В., Дорина А.Л., Авалиани С.Л., Сафонова Ю.Л., Беседовская Д.С. Стратегия низкоуглеродного развития России. Возможности и выгоды замещения ископаемого топлива «зелеными» источниками энергии М.: ТЕИС, 2016. 48 с. [Safonov G.V., Stetsenko A.V., Dorina A.L., Avaliani S.L., Safonova Yu.L., Besedovskaya D.S. The Strategy of Low-Carbon Development of Russia. Opportunities and Benefits of Substitution of Fossil Fuels with “Green” Energy Sources. Moscow, TEIS Publ., 2016. 48 p.].
11. Тепловой расчет котлов (нормативный метод) / РАО «ЕЭС России», ВТИ, НПО ЦКТИ. СПб., 1998. 257 с. [Thermal Calculation of Boilers (Normative Method). Saint Petersburg, 1998. 257 p.].
12. Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1991. 416 с. [Trembovlya V.I., Finger E.D., Avdeyeva A.A. Heating Tests of Boilers. Moscow, Energoatomizdat Publ., 1991. 416 p.].
13. Borchsenius H., Borgnes D. Black Carbon Emissions from the District Heating Sector in the Barents Region. NORSK ENERGI. Ministry of Environment of Norway. Project Name: RUS-11/0060. Norway, 2013. 56 p.
14. Flach B., Bendz K., Krautgartner R., Lieberz S. EU-27. Biofuels Annual Report No. NL3034. The Hague, USDA Foreign Agricultural Service, 2013. 34 p.
15. Lyubov V.K., Malygin P.V., Popov A.N., Popova E.I. Determining Heat Loss into the Environment Based on Comprehensive Investigation of Boiler Performance Characteristics. Thermal Engineering, 2015, vol. 62, iss. 8, pp. 572–576. DOI: 10.1134/S004060151506004X
16. Magdziarz A., Wilk M., Straka R. Combustion Process of Torrefied Wood Biomass. Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 1339–1349. DOI: 10.1007/s10973-016-5731-0
17. Petzold A., Ogren J.A., Fiebig M., Laj P., Li S-M., Baltensperger U. et al. Recommendations for Reporting “Black Carbon” Measurements. Atmospheric Chemistry and Physics, 2013, vol. 13, pp. 8365–8379. DOI: 10.5194/acp-13-8365-2013
18. Poletto M., Zattera A.J., Forte M.M.C., Santana R.M.C. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresource Technology, 2012, vol. 109, pp. 148–153. DOI: 10.1016/j.biortech.2011.11.122
19. Porfiriev B.N., Roginko S.A. Energy on Renewable Sources: Prospects for the World and for Russia. Herald of the Russian Academy of Sciences, 2016, vol. 86, iss. 6, pp. 433–440. DOI: 10.1134/S101933161606006X
20. World Energy Resources: 2013 Survey. Ch. 7. Bioenergy. London, World Energy Council, 2013. 24 p. Available at: https://www.worldenergy.org/assets/images/imported/2013/10/WER_2013_7_Bioenergy.pdf (accessed 27.12.18).

Ссылка на английскую версию:

Combustion Efficiency of Wood Fuel in the Water Boilers KVU-2000

COMBUSTION EFFICIENCY OF WOOD FUEL IN THE WATER BOILERS KVU-2000

V.K. Lyubov, Doctor of Engineering, Prof.; ResearcherID:AAF-8949-2019, ORCID: 0000-0001-7050-1212
A.N. Popov, Candidate of Engineering, Assoc. Prof.; ResearcherID: N-5104-2019, ORCID: 0000-0003-0144-1513
Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; e-mail: vk.lubov@mail.ru, a.n.popov@narfu.ru

Renewable energy use is one of priority areas of power production development. One of the sources is wood biomass. Utilization of wood biomass in the regions with developed timber industry is a prospective decision in ensuring power independence. Wood biomass usage allows to recover by-products of logging and woodworking industries, generate cheaper electric power and reduce an impact on the environment. The North-West of Russia has huge wood reserves. As a result, the issues of efficient utilization of wood biomass are relevant for the region. An effective way of the complex solution of energetical and ecological problems with provision of heating loads is application of modern devices operating on wood fuel such as modern water boilers. This study aims to analyze heat engineering and environmental performance of the boiler KVU-2000 during the combustion of by-products of timber industry. The components of the boiler’s heat balance and gaseous effluents have been determined. Emissions of particulate matter and the content of soot particles have been studied. The study results have shown that the boiler KVU-2000 provides high economic and environmental performance when operating on polydisperse wood fuel. However, a manual regulation of secondary air flow and absence of the flue gas oxygen control systems do not allow to keep optimum combustion air-blown mode. Absence of resistance control devices for ash collectors and thermal insulation of elements in post-combustion gas path lead to irrational heat losses, which conflicts with normative regulations. A limited operational period between cleaning of heating surfaces of a fire-tube boiler demands strict requirements to capacity redundancy. Elimination of identified flaws will ensure substantial increase of energetic and economic performance of the boilers; allow to minimize the emissions of harmful substances of biofuel burning, and recommend these boilers for application in heat supply systems in the Arctic region.
For citation: Lyubov V.K., Popov A.N. Combustion Efficiency of Wood Fuel in the Water Boilers KVU-2000. Lesnoy Zhurnal [Russian Forestry Journal], 2020, no. 1, pp. 167–179. DOI: 10.37482/0536-1036-2020-1-167-179
Acknowledgments: The authors are grateful to D.G. Chukhchin for carrying out the research using the scanning electron microscopy method.

Keywords: water boiler, wood fuel, harmful substances, furnace, heat losses, efficiency.

Поступила 31.12.18 / Received on December 31, 2018