Осторожно мошенники! Официально заявляем, никакие денежные средства с авторов и членов редколлегии НЕ ВЗЫМАЮТСЯ! Большая просьба игнорировать «спам-письма».

Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002

Местонахождение: Редакция «Лесной журнал», наб. Северной Двины, 17, ауд. 1425, г. Архангельск

Тел/факс: (818-2) 21-61-18
Сайт: http://lesnoizhurnal.ru/
e-mail: forest@narfu.ru


архив

Методика компьютерного эксперимента при определении грузоподъемности и размеров грузового отсека лесной транспортной машины

Версия для печати

И.Р. Шегельман, П.В. Будник, В.Н. Баклагин

Рубрика: Лесоэксплуатация

Скачать статью (pdf, 1.4MB )

УДК

634.0.3

DOI:

10.17238/issn0536-1036.2019.6.160

Аннотация

Цель исследования заключалась в формировании объективной информации о массе транспортируемой пачки лесоматериалов для лесопромышленных предприятий и производителей лесных машин, способствующей рациональному выбору конкретных моделей форвардеров и обоснованию их основных параметров для природнопроизводственных условий Северо-Западного федерального округа. Исследование основано на компьютерном эксперименте и значительном объеме фактических данных о формах стволов деревьев, полученных при помощи средств объективного контроля харвестеров. Место сбора фактических данных о формах стволов – Республика Карелия. Рассматривались следующие модели форвардеров: John Deere 1210Е, John Deere 1110Е, Ponsse Elk, Ponsse Wisent, Амкодор 2661-01, Rottne F13D, Rottne F15D, Rottne F18D. Результаты показали, что масса пачки лесоматериалов изменяется в широких пределах. В среднем масса пачки, сформированной из елового пиловочника длиной 6,1 м составляет 4,5 т, из елового баланса длиной 4,0 м – 2,8 т. При транспортировке пачки длиной 4,0 м все рассмотренные модели имеют запас по грузоподъемности, при транспортировке пачки из пиловочника длиной 6,1 м все модели форвардеров работают с недостаточной грузоподъемностью. Установлено, что при площади поперечного сечения грузового отсека 4,0 м2 грузоподъемность модели должна быть не менее 16 т, при площади 4,8 м2 – не менее 19 т. При транспортировке пачки, составленной из сортиментов длиной 6,1 м, необходимо загружать грузовой отсек форвардеров не более чем на 3/4, что позволит с высокой вероятностью исключить превышение рейсовой нагрузки над номинальной грузоподъемностью лесной транспортной машины.
Финансирование: Работа выполнена в рамках реализации гранта Президента Российской Федерации для государственной поддержки молодых российских ученых по проекту «Разработка среды конструкторского проектирования оптимальных параметров технологического оборудования лесных многооперационных машин» (МК-5321.2018.8)

Сведения об авторах

И.Р. Шегельман1, д-р техн. наук, проф.; ResearcherID: P-9793-2019; ORCID: 0000-0001-5133-4586
П.В. Будник1, канд. техн. наук, начальник отдела защиты интеллектуальной собственности и изобретательства; ResearcherID: E-1782-2015; ORCID: 0000-0002-8701-4442
В.Н. Баклагин2, канд. техн. наук, науч. сотр.; ResearcherID: M-2265-2016; ORCID: 0000-0002-0060-1653
1Петрозаводский государственный университет, просп. Ленина, д. 33, г. Петрозаводск, Республика Карелия, Россия, 185910; e-mail: shegelman@onego.ru, budnikpavel@yandex.ru
2Институт водных проблем Севера Карельского научного центра РАН, просп. Александра Невского, д. 50, г. Петрозаводск, Республика Карелия, Россия, 185030; e-mail: slava.baklagin@mail.ru

Ключевые слова

имитационное моделирование, компьютерный эксперимент, масса пачки, грузоподъемность, лесосечные работы, форвардер

Для цитирования

Шегельман И.Р., Будник П.В., Баклагин В.Н. Методика компьютерного эксперимента при определении грузоподъемности и размеров грузового отсека лесной транспортной машины // Лесн. журн. 2019. № 6. С. 160–173. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.6.160

Литература

  1. Богданов Е.С., Козлов В.А., Пейч Н.Н. Справочник по сушке древесины. М.: Лесн. пром-сть, 1981. 192 с. [Bogdanov E.I., Kozlov V.A., Peych N.N. Handbook on Wood Drying. Moscow, Lesnaya promyshlennost’ Publ., 1981. 192 p.].
  2. Боровиков А.М., Уголев Б.Н. Справочник по древесине. М.: Лесн. пром-сть, 1989. 296 с. [Borovikov A.M., Ugolev B.N. Handbook on Wood. Moscow, Lesnaya promyshlennost’ Publ., 1989. 296 p.].
  3. Войнаш А.С., Войнаш С.А. Исследование влияния рейсовой нагрузки на проходимость гусеничного сортиментовоза // Лесн. журн. 2011. № 5. С. 47–53. [Voinash A.S., Voinash S.A. Study of Run Load Impact on Cross-Country Ability of Track-Type Short Log Truck. Lesnoy Zhurnal [Forestry Journal], 2011, no. 5, pp. 47–53.]. URL: http://lesnoizhurnal.ru/upload/iblock/32f/hihx1.pdf
  4. Катаров В.К., Сюнёв В.С., Ратькова Е.И., Герасимов Ю.Ю. Влияние форвардеров на лесные почво-грунты // Resources and Technology. 2012. № 9(2). С. 73–81. [Katarov V.K., Syunev V.S., Ratkova E.I., Gerasimov Y.Y. Impact of Wood Forwarding on Forest Soils. Resources and Technology, 2012, no. 9(2), pp. 73–81].
  5. Полубояринов О.И. Плотность древесины. М.: Лесн. пром-сть, 1976. 160 с. [Poluboyarinov O. I. Wood Density. Moscow, Lesnaya promyshlennost’ Publ., 1976. 160 p.].
  6. Цывин М.М. Использование древесной коры. М.: Лесн. пром-сть, 1973. 96 с. [Tsyvin M.M. The Use of Wood Bark. Moscow, Lesnaya promyshlennost’ Publ., 1973. 96 p.].
  7. Akay A.E., Yilmaz M., Tonguc F. Impact of Mechanized Harvesting Machines on Forest Ecosystem: Residual Stand Damage. Journal of Applied Sciences, 2006, vol. 6, iss. 11, pp. 2414–2419.
  8. Ampoorter E., de Schrijver A., van Nevel L., Hermy M., Verheyen K. Impact of Mechanized Harvesting on Compaction of Sandy and Clayey Forest Soils: Results of a Meta-Analysis. Annals of Forest Science, 2012, vol. 69, iss. 5, pp. 533–542. DOI: 10.1007/s13595-012-0199-y
  9. Brunberg T. Underlag till produktionsnormer för skotare [Productivity-Norm Data for Forwarders]. Redogörelse nr. 3. Uppsala, Skogforsk, 2004. 12 p.
  10. Danilović M., Stojnić D., Karić S., Sučević M. Transport of Technical RoundWood by Forwarder and Tractor Assembly from Poplar Plantations. Nova mehanizacija šumarstva, 2014, vol. 35, no. 1, pp. 11–22.
  11. Eliasson L. Effects of Forwarder Tyre Pressure on Rut Formation and Soil Compaction. Silva Fennica, 2005, vol. 39, no. 4, pp. 549–557. DOI: 10.14214/sf.366
  12. Engel A.-M., Wegener J., Lange M. Greenhouse Gas Emissions of Two Mechanised Wood Harvesting Methods in Comparison with the Use of Draft Horses for Logging. European Journal of Forest Research, 2012, vol. 131, iss. 4, pp. 1139–1149. DOI: 10.1007/s10342-011-0585-2
  13. Gerasimov Y., Senkin V., Väätäinen K. Productivity of Single-Grip Harvesters in Clear-Cutting Operations in the Northern European Part of Russia. European Journal of Forest Research, 2012, vol. 131, iss. 3, pp. 647–654. DOI: 10.1007/s10342-011-0538-9
  14. Gerasimov Y., Sokolov A. Ergonomic Evaluation and Comparison of Wood Harvesting Systems in Northwest Russia. Applied Ergonomics, 2014, vol. 45, iss. 2, part B, pp. 318–338. DOI: 10.1016/j.apergo.2013.04.018
  15. Gerasimov Y., Sokolov A., Fjeld D. Improving Cut-to-Length Operations Management in Russian Logging Companies Using a New Decision Support System. Baltic Forestry, 2013, vol. 19, iss. 1, pp. 89–105.
  16. Gingras J-F. Recent Developments in Chip Cleaning and Cut-to-Length Harvesting Technologies in Finland. Internal Report IR-1995-06-01. Forest Engineering Research Institute of Canada, Eastern Division, 1995.
  17. Golyakevich S.A., Goronovskii A.R. Evaluation of Loading Dynamics and Fatigue Life for a Forwarder Half-Frame Articulation. Journal of Machinery Manufacture and Reliability, 2017, vol. 46, iss. 5, pp. 463–471. DOI: 10.3103/S1052618817050077
  18. Goutal N., Keller T., Défossez P., Ranger J. Soil Compaction Due to Heavy Forest Traffic: Measurements and Simulations Using an Analytical Soil Compaction Model. Annals of Forest Science, 2013, vol. 70, iss. 5, pp. 545–556. DOI: 10.1007/s13595-013-0276-x
  19. Klvač R., Fischer R., Skoupý A. Energy Use of and Emissions from the Operation Phase of a Medium Distance Cableway System. Croatian Journal of Engineering, 2012, vol. 33, iss. 1, pp. 79–88.
  20. Labelle E.R., Jaeger D. Effects of Steel Flexible Tracks on Forwarder Peak Load Distribution: Results from a Prototype Load Test Platform. Croatian Journal of Engineering, 2019, vol. 40, iss. 1, pp. 1–23.
  21. Lijewski P., Merkisz J., Fuć P., Ziółkowski A., Rymaniak L., Kusiak W. Fuel Consumption and Exhaust Emissions in the Process of Mechanized Timber Extraction and Transport. European Journal of Forest Research, 2017, vol. 136, iss. 1, pp. 153–160. DOI: 10.1007/s10342-016-1015-2
  22. Lindholm E.-L., Berg S. Energy Requirement and Environmental Impact in Timber Transport. Scandinavian Journal of Forest Research, 2004, vol. 20, iss. 2, pp. 184–191. DOI: 10.1080/02827580510008329
  23. Lindholm E.-L., Berg S., Hansson P.-A. Energy Efficiency and the Environmental Impact of Harvesting Stumps and Logging Residues. European Journal of Forest Research, 2010, vol. 129, iss. 6, pp. 1223–1235. DOI: 10.1007/s10342-010-0412-1
  24. Mousavi S.R. Comparison of Productivity, Cost and Environmental Impacts of Two Harvesting Methods in Northern Iran: Short-Log versus Long-Log. Ph.D. Thesis. University of Joensuu, Finland. 2009.
  25. Nieuwenhuis M., Dooley T. The Effect of Calibration on the Accuracy of Harvester Measurements. International Journal of Forest Engineering, 2006, vol. 17, iss. 2, pp. 25–33. DOI: 10.1080/14942119.2006.10702533
  26. Nurminen T., Korpunen H., Uusitalo J. Time Consumption Analysis of the Mechanized Cut-to-Length Harvesting System. Silva Fennica, 2006, vol. 40, no. 2, pp. 335–363. DOI: 10.14214/sf.346
  27. Oberscheider M., Zazgornik J., Henriksen C.B., Gronalt M., Hirsch P. Minimizing Driving Times and Greenhouse Gas Emissions in Timber Transport with a Near-Exact Solution Approach. Scandinavian Journal of Forest Research, 2013, vol. 28, iss. 5, pp. 493–506. DOI: 10.1080/02827581.2012.758309
  28. Pandur Z., Horvat D., Šušnjar M., Zorić M., Knežević M. Load Space Utilization of a Valmet 860.4 Forwarder. Forest Engineering: “Making a Positive Contribution”. Abstracts and Proceedings of the 48th Symposium on Forest Mechanization, Linz, Austria, October 4–8, 2015. Linz, Austria, 2015, pp. 271–275.
  29. Proto A.R., Macrì G., Visser R., Harrill Н., Russo D., Zimbalatti G. A Case Study on the Productivity of Forwarder Extraction in Small-Scale Southern Italian Forests. Small-Scale Forestry, 2018, vol. 17, iss. 1, pp. 71–87. DOI: 10.1007/s11842-017-9376-z
  30. Proto A.R., Macrì G., Visser R., Harrill Н., Russo D., Zimbalatti G. Factors Affecting Forwarder Productivity. European Journal of Forest Research, 2018, vol. 137, iss. 2, pp. 143–151. DOI: 10.1007/s10342-017-1088-6
  31. Ringdahl O., Hellström T., Lindroos O. Potentials of Possible Machine Systems for Directly Loading Logs in Cut-to-Length Harvesting. Canadian Journal of Forest Research, 2012, vol. 42, no. 5, pp. 970–985. DOI: 10.1139/x2012-036
  32. Sängstuvall L., Bergström D., Lämås T., Nordfjell T. Simulation of Harvester Productivity in Selective and Boom-Corridor Thinning of Young Forests. Scandinavian Journal of Forest Research, 2012, vol. 27, iss. 1, pp. 56–73. DOI: 10.1080/02827581.2011.628335
  33. Sängstuvall L., Lämås T., Nordfjell T. Application of a Primarily Deductive Framework Describing Time Consumption for Hauling of Logs to Road-Side. Annals of Operations Research, 2014, vol. 219, iss. 1, pp. 477–489. DOI: 10.1007/s10479-012-1172-8
  34. Sirén M., Salmivaara A., Ala-Ilomäki J., Launiainen S., Lindeman H., Uusitalo J., Sutinen R., Hänninen P. Predicting Forwarder Rut Formation on Fine-Grained Mineral Soils. Scandinavian Journal of Forest Research, 2019, vol. 34, iss. 2, pp. 145–154. DOI: 10.1080/02827581.2018.1562567
  35. Talbot B., Nordfjell T., Suadicani K. Assessing the Utility of Two Integrated Harvester-Forwarder Machine Concepts through Stand-Level Simulation. International Journal of Forest Engineering, 2003, vol. 14, iss. 2, pp. 31–43. DOI: 10.1080/14942119.2003.10702476
  36. Vossbrink J., Horn R. Modern Forestry Vehicles and Their Impact on Soil Physical Properties. European Journal of Forest Research, 2004, vol. 123, iss. 4, pp. 259–267. DOI: 10.1007/s10342-004-0040-8
  37. Wang J., LeDoux C.B., Li Y. Simulating Cut-to-Length Harvesting Operations in Appalachian Hardwoods. International Journal of Forest Engineering, 2005, vol. 16, iss. 2, pp. 11–27. DOI: 10.1080/14942119.2005.10702510

COMPUTER EXPERIMENT TECHNIQUE FOR DETERMINING THE LOAD CAPACITY AND DIMENSIONS OF THE CARRYING COMPARTMENT OF A FOREST VEHICLE

I.R. Shegelman1, Doctor of Engineering, Prof.; ResearcherID: P-9793-2019; ORCID: 0000-0001-5133-4586 
P.V. Budnik1, Candidate of Engineering, Head of the Department of Intellectual Property and Invention Protection; ResearcherID: E-1782-2015; ORCID: 0000-0002-8701-4442 
V.N. Baklagin2, Candidate of Engineering, Research Scientist; ResearcherID: M-2265-2016; ORCID: 0000-0002-0060-1653 
1Petrozavodsk State University, prosp. Lenina, 33, Petrozavodsk, Republic of Karelia, 185910, Russian Federation; e-mail: shegelman@onego.ru, budnikpavel@yandex.ru
2Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences, prosp. Aleksandra Nevskogo, 50, Petrozavodsk, Republic of Karelia, 185030, Russian Federation; e-mail: slava.baklagin@mail.ru

The research purpose involved the formation of objective information on the weight of a hauled bundle of logs for wood enterprises and forest machinery manufacturers; contributing to the rational choice of specific models of forwarders and justification of their basic parameters for the natural and production conditions of the Northwestern Federal District. The research is based on a computer experiment and a large amount of actual data on the forms of tree trunks obtained with the help of the data recorders of harvesters. The Republic of Karelia was the collecting point of actual data on the forms of trunks. The following forwarder models were considered: John Deere 1210Е, John Deere 1110Е, Ponsse Elk, Ponsse Wisent, Аmkodor 2661-01, Rottne F13D, Rottne F15D, and Rottne F18D. The results have shown that the weight of a bundle varies within wide limits. On average, the weight of a bundle made up of 6.1 m long spruce sawlog is 4.5 t, and 4.0 m long spruce pulpwood is 2.8 t. All the considered models have a stock of load capacity in transporting a bundle made up of 4 m long pulpwood. All the models of forwarders have insufficient load capacity in transporting a bundle made up of 6.1 m long sawlog. We recommend providing load capacity of at least 16 t for a cross-sectional area of the carrying compartment 4 m2, and not less than 19 t for the area of 4.8 m2 for logging machines designers. It is necessary to upload the carrying compartment of forwarders not more than to three-fourths when transporting a bundle made up of 6.1 m long assortment. This will highly likely allow to exclude the overloading of scheduled capacity over the rated load capacity of a forest transport vehicle.
For citation: Shegelman I.R., Budnik P.V., Baklagin V.N. Computer Experiment Technique for Determining the Load Capacity and Dimensions of the Carrying Compartment of a Forest Vehicle. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 6, pp. 160–173. DOI: 10.17238/ issn0536-1036.2019.6.160
Funding: The research was carried out within the framework of the grant of the President of the Russian Federation for the state support of young Russian scientists on the project “Development of an Environment for the Design of Optimal Parameters of Technological Equipment for Forest Multioperational Machines” (МК-5321.2018.8).

Keywords: simulation modeling, computer experiment, bundle weight, load capacity, logging operations, forwarder.

Поступила 19.06.19 / Received on June 19, 2019