Осторожно мошенники! Официально заявляем, никакие денежные средства с авторов и членов редколлегии НЕ ВЗЫМАЮТСЯ! Большая просьба игнорировать «спам-письма».

Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002

Местонахождение: Редакция «Лесной журнал», наб. Северной Двины, 17, ауд. 1425, г. Архангельск

Тел/факс: (818-2) 21-61-18
Сайт: http://lesnoizhurnal.ru/
e-mail: forest@narfu.ru


архив

Эколого-физиологические особенности реакции сосны обыкновенной на уровень плодородия почвы как показатель адаптации к условиям среды

Версия для печати

В.М. Лебедев, Е.В. Лебедев

Рубрика: Лесное хозяйство

Скачать статью (pdf, 0.7MB )

УДК

581.43:631.811:630*161.32:676.032.16

DOI:

10.17238/issn0536-1036.2019.6.92

Аннотация

Проведены комплексные эколого-физиологические исследования на уровне организма реакции растений сосны обыкновенной на изменение плодородия почвы в целях получения количественных показателей функционирования листового аппарата, корневой системы и характера их взаимосвязи. Биологическую продуктивность рассчитывали по В.М. и Е.В. Лебедевым, чистую продуктивность фотосинтеза – по А.А. Ничипоровичу, минеральную продуктивность – по В.М. Лебедеву. В условиях микрополевого опыта на серой лесной почве изучена реакция 2–3-летних растений сосны обыкновенной на внесение на фоне Р60К60 по 30, 60, 120 и 240 кг/га азота. Выявлено, что увеличение уровня азотного питания привело к изменению эколого-физиологических показателей работы корневой системы и листового аппарата (отношения корневого потенциала к фотосинтетическому, поглощения азота единицей активной поверхности корней в сутки, чистой продуктивность фотосинтеза, биологической продуктивности растений). Уровень азотного питания практически не влиял на чистую продуктивность фотосинтеза, но способствовал повышению биологической продуктивности в 1,2–1,5 раза. Рост уровня азотного питания привел к изменению соотношения между величинами корневого и фотосинтетического потенциалов в пользу листового аппарата. Между фотосинтетическим потенциалом и приростом сухой массы установлена высокая положительная связь (r = 0,931–0,992), между отношением корневого потенциала к фотосинтетическому и поглощением азота – высокая отрицательная корреляция (r = –(0,843–0,963)). Максимальное значение биологической продуктивности у сосны было отмечено при дозе азота 120 кг/га. Дальнейшее повышение уровня азотного питания привело к уменьшению этого показателя и оказалось токсичным. Реакция сосны на снижение плодородия почвы (вследствие его высокой инерционности) определена в результате ретроспективного комплексного эколого-физиологического анализа табличных данных фитомассы, составленных В.А. Усольцевым, для древостоев, произраставших в европейской и азиатской частях России в возрастной период от 10–20 до 150–300 лет. Естественное снижение плодородия почвы во всех регионах с возрастом древостоев сосны от 25 до 100 лет вызвало уменьшение поглощения азота в 18,5–84,5 раза, чистой продуктивности фотосинтеза – в 3,4–18,0 раз. Корреляция между возрастом растений и поглощением азота и чистой продуктивностью фотосинтеза варьировала от –0,714 до –0,870 и от –0,894 до –0,991 соответственно. Снижение активности работы фотосинтетического аппарата и корневой системы отрицательно сказалось на биологической продуктивности, которая упала от 2,8 до 4,0 раз в зависимости от региона. Связь биологической продуктивности с возрастом была высокая отрицательная (коэффициент корреляции варьировал от –0,572 до –0,783). Связь минеральной продуктивности с биологической продуктивностью и чистой продуктивностью фотосинтеза во всех случаях была высокой положительной: от 0,907 до 0,994 и от 0,757 до 0,932 соответственно. Начиная с 25 лет, растения адаптировались к снижению почвенного плодородия путём увеличения отношения корневого потенциала к фотосинтетическому, которое, в зависимости от региона, в течение онтогенеза выросло от 4,8 до 12,5 раза. Такая неспецифическая реакция подтверждается высокой положительной корреляцией (r = 0,947–0,997) отношения корневого потенциала к фотосинтетическому с возрастом дерева.

Сведения об авторах

В.М. Лебедев, д-р с.-х. наук, проф; ResearcherID: M-8699-2019, ORCID: 0000-0003-3316-854X
Е.В. Лебедев, канд. биол. наук, доц; ResearcherID: G-9445-2019, ORCID: 0000-0002-5824-6981
Нижегородская государственная сельскохозяйственная академия, просп. Гагарина, д. 97, г. Н. Новгород, Россия, 603107; e-mail: proximus39@mail.ru, proximus77@mail.ru

Ключевые слова

сосна обыкновенная, азотное питание, минеральная продуктивность, чистая продуктивность фотосинтеза, уровень организма, биологическая продуктивность

Для цитирования

Лебедев В.М., Лебедев Е.В. Эколого-физиологические особенности реакции сосны обыкновенной на уровень плодородия почвы как показатель адаптации к условиям среды // Лесн. журн. 2019. № 6. С. 92–103. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.6.92

Литература

  1. Бессчётнов В.П., Лебедев Е.В. Фотосинтез и биологическая продуктивность лесообразующих пород Волго-Вятского региона // Актуальные проблемы лесного хозяйства и рациональное использование ресурсов Нижегородской области. Н. Новгород, НГСХА, 2002. С. 107–116. [Besschetnov V.P., Lebedev E.V. Photosynthesis and BiologicalProductivity of Forest-Forming Species of Volga-Vyatka Region. Actual Problems of Forestry and Rational Use of Natural Resources of Nizhny Novgorod Region. Nizhny Novgorod, NNSAA Publ., 2002, pp. 107–116].
  2. Вахмистров Д.Б., Воронцов В.А. Избирательная способность растений не направлена на обеспечение их максимального роста // Физиология растений. 1997. Т. 44. № 3. С. 404–412. [Vakhmistrov D.B., Vorontsov V.А. Selective Nutrient Uptake by Plants is not Aimed at Providing Superior Growth. Fiziologiya rasteniy [Russian Journal of Plant Physiology], 1997, vol. 44, no. 3, pp. 404–412].
  3. Ильин В.Б. Элементарный химический состав растений. Факторы, его определяющие // Изв. Сиб. отд. АН СССР. 1977. № 10. Сер.: Биол. науки. Вып. 2. С. 3–14. [Il’in V.B. Elemental Chemical Composition of Plants. Determinal Factors. Izvestiya Sibirskogo otdeleniya AN SSSR. Seriya biologicheskiye nauki, 1977, no. 10, iss. 2, pp. 3–14].
  4. Курнаев С.Ф. Лесорастительное районирование СССР. М.: Изд-во АН СССР, 1973. 203 с. [Kurnayev S.F. Forest Site Zoning of the USSR. Moscow, AN SSSR Publ., 1973. 203 p.].
  5. Курсанов А.Л. Транспорт ассимилятов в растении. М.: Наука, 1976. 647 с. [Kursanov А.L. Transport of Assimilates in the Plant. Moscow, Nauka Publ., 1976. 647 p.].
  6. Лавриченко В.М. Соотношение элементов питания в растениях как видовое генотипическое понятие // Вестн. с.-х. науки. 1971. № 7. С. 129–134. [Lavrichenko V.M. The Ratio of Nutrients in Plants as a Species Genotypic Concept. Vestnik sel’sko-khozyaystvennoy nauki, 1971, no. 7, pp. 129–134].
  7. Лебедев В.М. Определение активной поверхности и минеральной продуктивности корневой системы плодовых и ягодных культур // Методика исследования и вариационная статистика в научном плодоводстве: сб. докл. Междунар. науч.-практ. конф., Мичуринск, 25–26 марта 1998 г. Мичуринск: МГСХА, 1998. Т. 2. С. 39–42. [Lebedev V.M. Determination of the Active Surface and Mineral Productivity of the Root System of Fruit and Berry Crops. Methods of Research and Variation Statistics in Scientific Fruit Growing: Proceedings of the International Scientific and Practical Conference, Michurinsk, March 25–26, 1998. Michurinsk, MGSKhA Publ., 1998, vol. 2, pp. 39–42].
  8. Лебедев В.М., Лебедев Е.В. Сравнительное определение продуктивности лесных пород // Нетрадиционные и редкие растения, природные соединения и перспективы их использования: VII междунар. симп., Белгород, 24–27 мая 2006 г. Белгорд: Политерра, 2006. Т. 1. С. 213–216. [Lebedev V.M., Lebedev E.V. Comparative Determination ofthe Forest Species Productivity. Non-Traditional and Threatened Species of Plants, Natural Compounds and Prospects for Their Use: Proceedings of the 7th International Symposium,Belgorod, May 24–27, 2006. Belgorod, Polyterra Publ., 2006, vol. 1, pp. 213–216].
  9. Лебедев В.М., Лебедев Е.В. Морфологические, функциональные и физиологические особенности активной части корневой системы лесообразующих пород Волго-Вятского региона // Агрохимия. 2011. № 4. С. 38–44. [Lebedev V.M., Lebedev E.V. Morphological, Functional, and Physiological Features of Active Roots of Forest-Forming Species in the Volga-Vyatka Region. Agrokhimiya [Eurasian Soil Science], 2011, no. 4, pp. 38–44].
  10. Лебедев В.М., Лебедев Е.В. Вопросы аллелопатии в лесных фитоценозах – состояние и перспективы // Агрохимия. 2015. № 4. С. 85–91. [Lebedev V.M., Lebedev E.V. Questions of Allelopathy in Forest Phytocenoses – State and Prospects. Agrokhimiya [Eurasian Soil Science], 2015, no. 4. pp. 85–91].
  11. Лебедев В.М., Лебедев Е.В. Функционирование листового аппарата, корневой системы и биологической продуктивности лиственницы сибирской на уровне организма в онтогенезе (на примере лиственничников Архангельской области) // Лесн. журн. 2018. № 3. С. 9–19. (Изв. высш. учеб. заведений). [Lebedev V.M., Lebedev E.V. Functioning of the Leaf Apparatus, Root System and Biological Productivity of Siberian Larch on the Level of the Organism in Ontogeny (the Case of Larch Forests of the Arkhangelsk Region). Lesnoy Zhurnal [Forestry Journal], 2018, no. 3, pp. 9–19]. DOI: 10.17238/issn0536-1036.2018.3.9; URL: http://lesnoizhurnal.ru/upload/iblock/e25/9_19.pdf
  12. Лиханова Н.В. Влияние сплошнолесосечной рубки на круговорот азота и зольных элементов в ельниках средней тайги: дисс. … канд. биол. наук. Сыктывкар, 2015. 203 с. [Likhanova N.V. The Impact of Clear Felling on the Cycle of Nitrogen and Ash Elements in Spruce Forests of Middle Taiga: Cand. Biol. Sci. Diss. Syktyvkar, 2015. 203 p.].
  13. Муромцев И.А. Методические указания к изучению всасывающей (активной) части корневой системы плодовых растений //Тр. Плодоовощного института им. И.В. Мичурина. 1967. Т. 21. С. 123–135. [Muromtsev I.А. Methodology Guidelines for the Study of the Suction (Active) Part of the Root System of Fruit Plants. Trudy Plodoovoshchnogo instituta im. I.V. Michurina, 1967, vol. 21, pp. 123–135].
  14. Ничипорович А.А. О методах учета и изучения фотосинтеза как фактора урожайности // Тр. ИФР АН СССР. 1955. Т. 10. С. 210–249. [Nichiporovich A.A. On the Methods of Recording and Studying Photosynthesis as a Yield Factor. Trudy Instituta Fiziologii Rasteniy AN SSSR, 1955, vol. 10, pp. 210–249].
  15. Ничипорович А.А. Теоретические и практические аспекты проблемы фотосинтеза // Вестн. АН СССР. 1972. № 12. С. 69–76. [Nichiporovich A.A. Theoretical and Practical Aspects of the Problem of Photosynthesis. Vestnik АN SSSR, 1972, no. 12, pp. 69–76].
  16. Придача В.Б., Сазонова Т.А. Морфофизиологическая реакция сосны обыкновенной в условиях гидролесомелиорации. Влияние рубок ухода, применение удобрений и осушения на содержание азота, фосфора и калия в органах деревьев // Лесн. журн. 2010. № 4. С. 32–38. (Изв. высш. учеб. заведений). [Pridacha V.B., Sazonova T.A. Morphological Response of Scotch Pine under Silvicultural Operations. Lesnoy Zhurnal [Forestry Journal], 2010, no. 4, pp. 32–38]. URL: http://lesnoizhurnal.ru/upload/iblock/873/873b7937eb1a0eae4e092422cf7309eb.pdf
  17. Разгулин C.М. Минерализация азота в почвах бореальных лесов // Лесоведение. 2008. № 4. С. 57–62. [Razgulin S.M. Mineralisation of Nitrogen in the Soils of Boreal Forests. Lesovedenie [Russian Journal of Forest Science], 2008, no. 4, pp. 57–62].
  18. Усольцев В.А. Фитомасса лесов Северной Евразии: нормативы и элементы географии. Екатеринбург: УрО РАН, 2002. 763 с. [Usol’tsev V.A. Phytomass of Northern Eurasia Forests: Standards and Elements of Geography.Yekaterinburg, Ural Branch RAS Publ., 2002. 763 p.].
  19. Begon M., Harper J.L., Townsend C.R. Ecology: Individuals, Populations and Communities. Malden, MA, Wiley-Blackwell, 1999. 1068 p.
  20. Cesco S., Neumann G., Tomasi N., Pinton R., Weisskopf L. Release of Plant-Borne Flavonoids into the Rhizosphere and Their Role in Plant Nutrition. Plant and Soil, 2010, vol. 329, iss. 1-2, pp. 1–25. DOI: 10.1007/s11104-009-0266-9
  21. Cox G.W., Atkins M.D. Agricultural Ecology: An Analysis of World Food Production Systems. San Francisco, W.H. Freeman, 1979. 721 p.
  22. Jost G., Dirnböck T., Grabner M.-T., Mirtl M. Nitrogen Leaching of Two Forest Ecosystems in a Karst Watershed. Water, Air, & Soil Pollution, 2011, vol. 218, iss. 1-4, pp. 633–649. DOI: 10.1007/s11270-010-0674-8
  23. Kidd F., West C., Briggs G.E. A Quantitative Analysis of the Growth of Helianthus annuus. Part I. – The Respiration of the Plant and of Its Parts throughout the Life Cycle. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1921, vol. 92, iss. 648, pp. 368–384. DOI: 10.1098/rspb.1921.0033
  24. Koocheki A., Lalegani B., Hosseini S.A. Ecological Consequences of Allelopathy. Allelopathy. Ed. by Z. Cheema, M. Farooq, A. Wahid. Berlin, Springer, 2013, pp. 23–38.DOI: 10.1007/978-3-642-30595-5_2
  25. Lundmark T., Bergh J., Strand M., Koppel A. Seasonal Variation of Maximum Photochemical Efficiency in Boreal Norway Spruce Stands. Trees, 1998, vol. 13, iss. 2,pp. 63–67. DOI: 10.1007/s004680050187
  26. Nye P.H., Tinker P.B. Solute Movement in the Soil-Root System. Berkeley, University of California Press, 1977. 342 p.
  27. Pollmer W.G., Eberhard D., Klein D., Dhillon B.S. Genetic Control of Nitrogen Uptake and Translocation in Maize. Crop Science Abstract, 1979, vol. 19, no. 1, pp. 82–86. DOI: 10.2135/cropsci1979.0011183X001900010019x
  28. Ranger J., Bonnaud P., Bouriaud O., Gelhaye D., Picard J.-F. Effects of the Clear-Cutting of a Douglas-Fir (Pseudotsuga menziesii (Mirb.) Franco) Plantation on Chemical Soil Fertility. Annals of Forest Science, 2008, vol. 65, iss. 3, p. 303. DOI: 10.1051/forest:2008001
  29. Rosenvald K., Ostonen I., Truu M., Truu J., Uri V., Vares A., Lõhmus K. FineRoot Rhizosphere and Morphological Adaptations to Site Conditions in Interaction with Tree Mineral Nutrition in Young Silver Birch (Betula pendula Roth.) Stands. European Journal of Forest Research, 2011, vol. 130, iss. 6, pp. 1055–1066. DOI: 10.1007/s10342-011-0492-6
  30. Scognamiglio M., D’Abrosca B., Esposito A., Pacifico S., Monaco P., Fiorentino A. Plant Growth Inhibitors: Allelopathic Role or Phytotoxic Effects? Focus on Mediterranean Biomes. Phytochemistry Reviews, 2013, vol. 12, iss. 4, pp. 803–830. DOI: 10.1007/s11101-013-9281-9
  31. Sonnewald U. Allelophysiology. Strasburger’s Plant Sciences. Berlin, Springer, 2013, pp. 569–606. DOI: 10.1007/978-3-642-15518-5_8

ECOLOGICAL AND PHYSIOLOGICAL FEATURES OF THE SCOTS PINE REACTION TO THE SOIL FERTILITY LEVEL AS AN INDICATOR OF ADAPTATION TO ENVIRONMENTAL CONDITIONS

V.M. Lebedev, Doctor of Agriculture, Prof.; ResearcherID: M-8699-2019, ORCID: 0000-0003-3316-854X
E.V. Lebedev, Candidate of Biology, Assoc. Prof.; ResearcherID: G-9445-2019, ORCID: 0000-0002-5824-6981
Nizhny Novgorod State Agricultural Academy, prosp. Gagarina, 97, Nizhny Novgorod, 603107, Russian Federation; e-mail: proximus39@mail.ru, proximus77@mail.ru

Comprehensive ecological and physiological studies (on the organism level) of plant response of Scots pine to changes in soil fertility were carried out in order to obtain quantitative parameters of the leaf apparatus and root system functioning and nature of their interrelation. Biological productivity was calculated according to V.M. Lebedev and E.V. Lebedev (2006), net productivity of photosynthesis – according to A.A. Nichiporovich (1955), and mineral productivity – according to V.M. Lebedev (1998). The response of 2–3-year-old scots pine plants was studied for fertilization with 30, 60, 120 and 240 kg/ha of nitrogen against the fertilizer application rate of Р60К60 under the conditions of a microfield experiment on gray forest soil. An increase in the level of nitrogen nutrition led to a change in the ecological and physiological parameters of the root system and leaf apparatus functioning: the ratio between root and photosynthetic potential, nitrogen absorption by the unit of the active surface of roots per day, net productivity of photosynthesis, and biological productivity of plants. The nitrogen status slightly affected the net productivity of photosynthesis, however drove up an increase in biological productivity by 1.2–1.5 times. An increase in the nitrogen status led to a change in the ratio between the values of root and photosynthetic potentials in favor of the leaf apparatus. A high positive correlation (0.931–0.992) between the photosynthetic potential and increase in dry mass; and a high negative correlation (–(0.843–0.963)) between the ratio of root potential to photosynthetic potential and nitrogen uptake were established. The maximum of pine biological productivity was observed at a nitrogen rate of 120 kg/ha. A further increase of the nitrogen status led to a decrease in biological productivity and was found to be toxic. The response of pine to a decrease in soil fertility (due to its slow response) was determined as a result of a retrospective comprehensive ecological and physiological analysis of tabular phytomass data compiled by V.A. Usol’tsev (2002) for tree stands growing in the European and Asian parts of Russia in the age range from 10–20 to 150–300 years. The natural decrease in soil fertility of pine stands with the age from 25 to 100 years in all the regions caused a decrease in nitrogen uptake by 18.5–84.5 times, and net productivity of photosynthesis by 3.4–18.0 times. The correlation between plant age, nitrogen uptake, and net productivity of photosynthesis ranged from –0.714 to –0.870 and –0.894 to –0.991, respectively. The decrease in the activity of photosynthetic apparatus and root system adversely affected the biological productivity, which fell from 2.8 to 4.0 times depending on the region. The relationship between biological productivity and age was high negative (correlation coefficient ranged from –0.572 to –0.783). The relationship between mineral productivity with biological productivity and net productivity of photosynthesis in all cases  was high positive from 0.907 to 0.994 and from 0.757 to 0.932, respectively. Starting from the age of 25, the plants adapted to a decrease in soil fertility by increasing the ratio of root to photosynthetic potential, which grew from 4.8 to 12.5 times during ontogenesis depending on the region. This nonspecific reaction is confirmed by the high positive correlation (from 0.947 to 0.997) of the ratio of root to photosynthetic potential with the tree age.
For citation: Lebedev V.M., Lebedev E.V. Ecological and Physiological Features of the Scots Pine Reaction to the Soil Fertility Level as an Indicator of Adaptation to Environmental Conditions. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 6, pp. 92–103. DOI: 10.17238/ issn0536-1036.2019.6.92

Keywords: Scots pine, nitrogen nutrition, mineral productivity, net productivity of photosynthesis, organism level, biological productivity.

Поступила 27.05.19 / Received on May 27, 2019