Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Сравнительный анализ элементного химического состава побегов Padus avium из техногенно нарушенных экотопов

Версия для печати

Ю.В. Загурская, Т.И. Сиромля

Рубрика: Лесное хозяйство

Скачать статью (pdf, 0.5MB )

УДК

634.24:58.02/581.192.1

DOI:

10.17238/issn0536-1036.2019.5.105

Аннотация

Для наиболее рационального применения растительных ресурсов в настоящее время рассматривается возможность производства из древесной массы крон добавок для пищевых продуктов, обогащенных биологически активными веществами, а также комбинированных типов лекарственного растительного сырья. При использовании растений, произрастающих на антропогенно преобразованных территориях, решающими становятся вопросы накопления в них потенциально опасных для человека химических элементов. Изучены закономерности распределения их в плодах, листьях и стеблях Padus avium из техногенно нарушенных экотопов на юге Западной Сибири. Содержание химических элементов исследовали методом атомно-эмиссионного спектрометрического анализа после сухого озоления. Элементный химический состав почв исследованных местообитаний характеризуется высокой вариабельностью и отсутствием значимых различий. Количество химических элементов в плодах, листьях и одревесневших стеблях P. avium из экотопов с различной степенью техногенной нагрузки статистически значимо не отличается. Относительно стабильное содержание химических элементов в основном характерно для эссенциальных элементов – Ca, K, Mg, P, B, Cu, Zn, а также Pb, Sn, V. Для элементов, в значительной степени связанных с мелкодисперсными почвенными частицами (Al, Cr, Fe, Mn, Na, Sc, Si, Ti), наблюдается высокая вариабельность. Во всех изученных образцах отмечена более высокая концентрация Sr, характерная и для других растений на юге Западной Сибири. В исследованных органах выявлена существенная разница в концентрации химических элементов: минимальное содержание большинства элементов обнаружено в плодах (за исключением B) и стеблях (за исключением Zn), листья содержат в несколько раз больше химических элементов, что может быть связано с более высоким вкладом почвенных частиц. Отсутствие превышения предельно допустимых концентраций по содержанию потенциально опасных элементов и наличие биологически активных соединений в плодах и листьях свидетельствуют о возможности применения древесной массы из крон P. avium в пищевой и косметической промышленности в качестве источника биологически активных веществ и натуральных красителей.

Финансирование: Работа выполнена в рамках проектов № 0352-2019-0015 (ЕГИСУ НИОКТР № 171170414100531) и № 0313-2016-0001 (ЕГИСУ НИОКТР № 171170301100781).

Сведения об авторах

Ю.В. Загурская1, канд. биол. наук; ResearcherID: M-3233-2014, ORCID: 0000-0001-8101-0945
Т.И. Сиромля2, канд. биол. наук; ResearcherID: W-9101-2019, ORCID: 0000-0002-0155-2283

1Федеральный исследовательский центр угля и углехимии Сибирского отделения РАН (Институт экологии человека), просп. Ленинградский, д. 10, г. Кемерово, Россия, 650065; e-mail: syjil@mail.ru
2Институт почвоведения и агрохимии Сибирского отделения РАН, просп. Академика Лаврентьева, д. 8/2, г. Новосибирск, Россия, 630090; e-mail: tatiana@issa.nsc.ru

Ключевые слова

Padus avium Mill., Prunus padus L., черемуха, элементный химический состав, органоспецифичность, растительные ресурсы, тяжелые металлы, биогенные элементы, эколого-гигиеническая оценка

Для цитирования

Загурская Ю.В., Сиромля Т.И. Сравнительный анализ элементного химического состава побегов Padus avium из техногенно нарушенных экотопов // Лесн. журн. 2019. № 5. С. 105–114. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2019.5.105

Литература

  1. Гусева Л.М. Распределение запасов древесных отходов из крон на территории лесного фонда Нижегородской области // Лесн. журн. 2018. № 4. С. 79–86. (Изв. высш. учеб. заведений). [Guseva L.M. Distribution of Reserves of Wood Waste from Crowns in the Forest Fund of the Nizhny Novgorod Region. Lesnoy Zhurnal [Forestry Journal], 2018, no. 4, pp. 79–86]. DOI: 10.17238/issn0536-1036.2018.4.79; URL: http://lesnoizhurnal.ru/upload/iblock/71c/79_86.pdf

  2. Динамика экосистем Новосибирского Академгородка / отв. ред. И.Ф. Жимулев. Новосибирск: Изд-во СО РАН, 2013. 438 с. [Dynamics of Ecosystems of Novosibirsk Academgorodok. Editor-in-Chief I.F. Zhimulev. Novosibirsk, SB RAS Publ., 2013. 438 p.].

  3. Загурская Ю.В., Коцупий О.В., Сиромля Т.И. Листья Padus avium (Rosaceae) из техногенно нарушенных экотопов как источник биологически активных веществ // Растительный мир Азиатской России. 2018. № 4. С. 102–107. [Zagurskaya Yu.V., Kotsupiy O.V., Siromlya T.I. Padus avium (Rosaceae) Leaves from the Industrially Disturbed Ecotopes as a Source of Biologically Active Substances. Rastitel’nyj Mir Aziatskoj Rossii [Plant Life of Asian Russia], 2018, no. 4, pp. 102–107]. DOI: 10.21782/RMAR1995-2449-2018-4(102-107)

  4. Коропачинский И.Ю. Встовская Т.Н. Древесные растения Азиатской России. Новосибирск: Изд-во СО РАН, филиал «Гео», 2002. 707 c. [Koropachinskiy I.Yu., Vstovskaya T.N. Woody Plants of Asian Russia. Novosibirsk, SB RAS, Geo Branch Publ., 2002. 707 p.].

  5. Ларионов М.В. Содержание тяжелых металлов в листьях городских древесных насаждений // Вестн. КрасГАУ. 2012. № 10. С. 71–75. [Larionov M.V. Heavy Metals Content in Urban Trees Plantation Leaves. Vestnik KrasGAU [The Bulletin of KrasGAU], 2012, no. 10, pp. 71–75].

  6. Ловкова М.Я., Рабинович А.М., Пономарева С.М., Бузук Г.Н., Соколова С.М. Почему растения лечат. М.: URSS, 2014. 288 с. [Lovkova M.Ya., Rabinovich A.M., Ponomareva S.M., Buzuk G.N., Sokolova S.М. Why Do Plants Treat? Moscow, URSS Publ., 2014. 288 p.].

  7. Мерзленко М.Д. Актуальные аспекты искусственного лесовосстановления // Лесн. журн. 2017. № 3. С. 22–30. (Изв. высш. учеб. заведений). [Merzlenko M.D. Relevant Aspects of Artificial Reforestation. Lesnoy Zhurnal [Forestry Journal], 2017, no. 3, pp. 22–30]. DOI: 10.17238/issn0536-1036.2017.3.22; URL: http://lesnoizhurnal.ru/upload/iblock/620/merzlenko.pdf

  8. ОФС.1.5.3.0009.15. Определение содержания тяжелых металлов и мышьяка в лекарственном растительном сырье и лекарственных растительных препаратах // Гос. фармакопея Российской Федерации. XIV изд. T. II. М., 2018. С. 2370–2382. [OFS.1.5.3.0009.15. Determination of Heavy Metals and Arsenic in Medicinal Plants and Herbal Medicinal Products. State Pharmacopeia of the Russian Federation. Vol. 2. Moscow, 2018, pp. 2370–2382].

  9. Романкевич Е.А. Живое вещество Земли (биогеохимические аспекты проблемы) // Геохимия. 1988. № 2. С. 292–306. [Romankevich E.A. Living Matter of the Earth (Biogeochemical Sides of the Issue). Geokhimiya [Geochemistry International], 1988, no. 2, pp. 292–306].

  10. Сагарадзе В.А., Бабаева Е.Ю., Уфимов Р.А., Загурская Ю.В., Трусов Н.А., Коротких И.Н., Маркин В.И., Пещанская Е.В., Можаева Г.Ф., Каленикова Е.И. Содержание флавоноидов в цветках с листьями боярышников (Crataegus L.) флоры РФ // Химия растит. сырья. 2018. № 4. С. 95–104. [Sagaradze V.A., Babaeva E.Yu., Ufimov R.A., Zagurskaya Yu.V., Trusov N.A., Korotkikh I.N., Markin V.I., Peschanskaya E.V., Mozhaeva G.F., Kalenikova E.I. Total Flavonoids in Crataegus «Flowers with Leaves» Raw Material of Russian Flora. Khimiya Rastitel’nogo Syr’ya [Chemistry of plant raw material], 2018, no. 4, pp. 95–104]. DOI: 10.14258/jcprm.2018044039

  11. Сиромля Т.И. Влияние аэрогенного загрязнения на элементный химический состав растений // Почвы в биосфере: сб. материалов Всерос. науч. конф. с междунар. участием, посвященной 50-летию Ин-та почвоведения и агрохимии СО РАН, г. Новосибирск, 10–14 сент. 2018 г. Томск: Изд. дом Томск. гос. ун-та, 2018. Ч. 1. С. 377–381. [Siromlya T.I. Effect of Aerogenic Contamination on the Chemical Elements Composition of Plants. Soils in Biosphere: Proceedings of the All-Russian Scientific Conference with International Participation Dedicated to the Fiftieth Anniversary of the Institute of Soil Science and Agrochemistry, SB RAS, Novosibirsk, September 10–14, 2018. Tomsk, TSU Publ., 2018, part 1, pp. 377–381].

  12. Сиромля Т.И., Сысо А.И., Загурская Ю.В., Баяндина И.И. Экологоагрохимическая оценка состава и свойств почв ботанических садов юго-востока Западной Сибири // Агрохимия. 2017. № 10. С. 16–23. [Siromlya T.I., Syso A.I., Zagurskaya Yu.V., Bayandina I.I. Ecological and Agrochemical Evaluation of Composition and Properties of Soils in Botanical Gardens of the South-East of Western Siberia. Agrokhimiya [Eurasian Soil Science], 2017, no. 10, pp. 16–23]. DOI: 10.7868/S0002188117100039

  13. Сысо А.И. Использование отношения Cr:Ni в мониторинге загрязнения природной среды // Агрохимия. 1998. № 4. С. 76–83. [Syso A.I. Applying of Cr:Ni Ratio for Environmental Pollution Monitoring. Agrokhimiya [Eurasian Soil Science], 1998, no. 4, pp. 76–83].

  14. Сысо А.И. Закономерности распределения химических элементов в почвообразующих породах и почвах Западной Сибири. Новосибирск: Изд-во СО РАН, 2007. 277 с. [Syso A.I. Patterns of Distribution of Chemical Elements in the Parent Rock Materials and Soils of Western Siberia. Novosibirsk, SB RAN Publ., 2007. 277 p.].

  15. ФС.2.5.0049.15. Черемухи обыкновенной плоды Padi avii fructus // Гос. фармакопея Российской Федерации. XIV изд. T. IV. М., 2018. С. 6594–6598. [FS.2.5.0049.15. Fruit of Bird Cherry Padi avii fructus. State Pharmacopeia of the Russian Federation. Vol. 4. Moscow, 2018, pp. 6594–6598].

  16. Черных Е.П., Мильшина Л.А., Гоголева О.В., Первышина Г.Г. Влияние экологических факторов и периода вегетации на содержание биологически активных веществ в некоторых видах растительного сырья Красноярского края // Вестн. КрасГАУ. 2012. № 11. С. 128–131. [Chernykh E.P., Milshina L.A., Gogoleva O.V., Pervyshina G.G. Ecological Factors and Vegetation Period Influence on the Content of Biologically Active Substances in Some Vegetative Raw Material Types in Krasnoyarsk Territory. Vestnik KrasGAU [The Bulletin of KrasGAU], 2012, no. 11, pp. 128–131].

  17. Чибрик Т.С. Основы биологической рекультивации: учеб. пособие. Екатеринбург: Изд-во Урал. ун-та, 2002. 172 с. [Chibrik T.S. Basics of Biological Recultivation: Educational Textbook. Yekaterinburg, USU Publ., 2002. 172 p.].

  18. Эмирбеков Э.З., Абдуразаков М.А., Исмаилов Х.М. Клинико-фармакологическая характеристика и содержание макро- и микроэлементов в лекарственных растениях Дагестана // Главный врач Юга России. 2007. № 3(11). С. 42–43. [Emirbekov E.Z., Abdurazakov M.A., Ismailov Kh.M. Сlinical and Pharmacological Description and Content of Macro- and Microelements in Medical Plants of Dagestan. Glavnyy vrach Yuga Rossii, 2007, no. 3(11), pp. 42–43].

  19. Bargagli R. Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery. Berlin, Springer, 1998. 324 p.

  20. Bragina P.S., Tsibart A.S., Zavadskaya M.P., Sharapova A.V. Soils on Overburden Dumps in the Forest-Steppe and Mountain Taiga Zones of the Kuzbass. Eurasian Soil Science, 2014, vol. 47, iss. 7, pp. 723–733. DOI: 10.1134/S1064229314050032

  21. Buksh E., Malik S.A., Ahmad S.S. Estimation of Nutritional Value and Trace Elements Content of Carthamus oxyacantha, Eruca sativa and Plantago ovate. Pakistan Journal of Botany, 2007, vol. 39, iss. 4, pp. 1181–1187.

  22. Colle C., Madoz-Escande C., Leclerc E. Foliar Transfer into the Biosphere: Review of Translocation Factors to Cereal Grains. Journal of Environmental Radioactivity, 2009, vol. 100, iss. 9, pp. 683–689. DOI: 10.1016/j.jenvrad.2008.10.002

  23. Cvetković D., Stanojević L., Zvezdanović J., Savić S., Ilić D., Karabegović I. Aronia Leaves at the End of Harvest Season – Promising Source of Phenolic Compounds, Macro- and Microelements. Scientia Horticulturae, 2018, vol. 239, pp. 17–25. DOI: 10.1016/j.scienta.2018.05.015

  24. Grae I. Nature’s Colors: Dyes from Plants. New York, Macmillan, 1979. 229 p.

  25. Hu Y., Zhou J., Du B., Liu H., Zhang W., Liang J., Zhang W., You L., Zhou J. Health Risks to Local Residents from the Exposure of Heavy Metals Around the Largest Copper Smelter in China. Ecotoxicology and Environmental Safety, 2019, vol. 171, pp. 329–336. DOI: 10.1016/j.ecoenv.2018.12.073

  26. Markert B. Establishing of ‘Reference Plant’ for Inorganic Characterization of Different Plant Species by Chemical Fingerprinting. Water, Air, and Soil Pollution, 1992, vol. 64, iss. 3-4, pp. 533–538. DOI: 10.1007/BF00483363

  27. Poonam V., Raunak V., Kumar G., Reddy L.C.S., Jain R., Sharma S.K., Prasad A.K., Parmar V.S. Chemical Constituents of the Genus Prunus and Their Medicinal Properties. Current Medicinal Chemistry, 2011, vol. 18, iss. 25, pp. 3758–3824. DOI: 10.2174/092986711803414386

  28. Rosca C., Schoenberg R., Tomlinson E.L., Kamber B.S. Combined Zinc-Lead Isotope and Trace-Metal Assessment of Recent Atmospheric Pollution Sources Recorded in Irish Peatlands. Science of The Total Environment, 2019, vol. 658, pp. 234–249. DOI: 10.1016/j.scitotenv.2018.12.049

  29. Sæbø A., Popek R., Nawrot B., Hanslin H.M., Gawronska H., Gawronski S.W. Plant Species Differences in Particulate Matter Accumulation on Leaf Surfaces. Science of The Total Environment, 2012, vol. 427-428, pp. 347–354. DOI: 10.1016/j.scitotenv. 2012.03.084

  30. Shariati S., Pourbabaee A.A., Alikhani H.A., Rezaei K.A. Investigation of Heavy Metal Contamination in the Surface Sediments of Anzali Wetland in North of Iran. Pollution, 2019, vol. 5, iss. 1, pp. 211–224. DOI: 10.22059/poll.2018.257276.438

  31. Siromlya T.I. Group Composition Forms of Heavy Metals in the Anthropogen. Environmental Science, 2018, vol. 201, art. 012021. DOI: 10.1088/1755-1315/201/1/012021

  32. Syso A.I., Syromlya T.I., Myadelets M.A., Cherevko A.S. Ecological and Biogeochemical Assessment of Elemental and Biochemical Composition of the Vegetation of Anthropogenically Disturbed Ecosystems (Based on the Example of Achillea millefolium L.). Contemporary Problems of Ecology, 2016, vol. 9, iss. 5, pp. 643–651. DOI: 10.1134/S1995425516050164

  33. Teleszko M., Wojdyło A. Comparison of Phenolic Compounds and Antioxidant. Potential between Selected Edible Fruits and Their Leaves. Journal of Functional Foods, 2015, vol. 14, pp. 736–746. DOI: 10.1016/j.jff.2015.02.041

  34. Wang S., Wang W., Chen J., Zhao L., Zhang B., Jiang X. Geochemical Baseline Establishment and Pollution Source Determination of Heavy Metals in Lake Sediments: A Case Study in Lihu Lake, China. Science of The Total Environment, 2019, vol. 657, pp. 978–986. DOI: 10.1016/j.scitotenv.2018.12.098


COMPARATIVE ANALYSIS OF THE ELEMENTAL CHEMICAL COMPOSITION OF Padus avium SHOOTS FROM ANTROPOGENICALLY DISTURBED ECOTOPS

Yu.V. Zagurskaya1, Candidate of Biology; ResearcherID: M-3233-2014, ORCID: 0000-0001-8101-0945
Т.I. Siromlya2, Candidate of Biology; ResearcherID:W-9101-2019, ORCID: 0000-0002-0155-2283

1Federal Research Center of Coal and Coal Chemistry, SB RAS (Institute of Human Ecology), prosp. Leningradskiy, 10, Kemerovo, 650065, Russian Federation; e-mail: syjil@mail.ru
2Institute of Soil Science and Agrochemistry, SB RAS, prosp. Akademika Lavrent’yeva, 8/2, Novosibirsk, 630090, Russian Federation; e-mail: tatiana@issa.nsc.ru

In order to use vegetative resources more efficiently nowadays a possibility to produce food supplements enriched with biologically active substances and also combined types of medical plant raw materials from wood pulp of crown is considered. When using plants growing on anthropogenically transformed territories, the issues of accumulation of chemical elements (CE) potentially hazardous for human in them become decisive. There have been studied mechanisms of CE distribution in Padus avium fruits, leaves and stems from anthropogenically transformed ecotopes in the south of Western Siberia. The content of CE has been studied by the atomic emission spectrometry after dry ashing. Element chemical composition of soils of studied habitats is characterized by high variability and absence of significant differences. The amounts of CE in fruits, leaves and lignified stems of Padus avium from anthropogenically transformed ecotopes with the different degree of environmental footprint do not differ significantly. Relatively stable content of CE is mainly peculiar to the essential elements of Ca, K, Mg, P, B, Cu, Zn and Pb, Sn, V as well. High variability is recorded for CE strongly associated with finely dispersed soil particles (Al, Cr, Fe, Mn, Na, Sc, Si, Ti). Higher concentration of Sr specific to other plants in the south of Western Siberia is observed in all studied samples. A sustainable difference was recorded in CE’s concentration in the studied organs. The minimum percentage of the most part of the elements was found in fruits (apart from B) and stems (apart from Zn). Leaves contain several times more CE which may be due to a higher contribution of soil particles. The exceedence absence of maximum permissible concentrations of potentially hazardous CE and presence of biologically active compounds in fruits and leaves indicate the capability of usage crown wood pulp of P. avium in food and beauty industries as a source of biologically active substances and natural dyes.

For citation: Zagurskaya Yu.V., Siromlya Т.I. Comparative Analysis of the Elemental Chemical Composition of Padus avium Shoots from Antropogenically Disturbed Ecotops. Lesnoy Zhurnal [Forestry Journal], 2019, no. 5, pp. 105–114. DOI: 10.17238/issn0536-1036.2019.5.105

Funding: The research was carried out within the framework of the projects No. 0352-2019-0015 (EGISU NIOKTR No. 171170414100531) and No. 0313-2016-0001 (EGISU NIOKTR No. 171170301100781).

Keywords: Padus avium Mill., Prunus padus L., bird cherry, chemical elements composition, organ-specificity, vegetative resources, heavy metals, biogenic elements, ecologicalhygienic estimation.

Поступила 29.03.19 / Received on March 29, 2019