Осторожно мошенники! Официально заявляем, никакие денежные средства с авторов и членов редколлегии НЕ ВЗЫМАЮТСЯ! Большая просьба игнорировать «спам-письма».

Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002

Местонахождение: Редакция «Лесной журнал», наб. Северной Двины, 17, ауд. 1425, г. Архангельск

Тел/факс: (818-2) 21-61-18
Сайт: http://lesnoizhurnal.ru/
e-mail: forest@narfu.ru


архив

Реакция роста сосны обыкновенной на климатические изменения в широтном градиенте

Версия для печати

Е.Н. Наквасина, Н.А. Прожерина, А.В. Чупров, В.В. Беляев

Рубрика: Лесное хозяйство

Скачать статью (pdf, 0.7MB )

УДК

582.475:551.583

DOI:

10.17238/issn0536-1036.2018.5.82

Аннотация

На примере потомства сосны обыкновенной, произрастающей в географических культурах подзоны средней тайги (Архангельская область), смоделирована реакция породы на различные сценарии изменения климата. Подобраны климатипы с различным местоположением исходных насаждений, отличающимся в широтном градиенте на 2...3º с. ш. Пинежский климатип (Архангельская область, подзона северной тайги) при выращивании в подзоне средней тайги имитирует потепление климата, тотемский климатип (Вологодская область, подзона южной тайги) – похолодание. Плесецкий климатип (Архангельская область, средняя подзона тайги) – местный для пункта испытания, является сравнительным эталоном сохранения адаптационных признаков в постоянстве климата. Изучены выживаемость (сохранность), рост и продуктивность культур. У тотемского климатипа заметное снижение сохранности происходит в первые годы после посадки, у плесецкого и пинежского климатипов процесс снижения сохранности, а следом и дифференциации насаждения растянуты, сдвинуты на более поздние сроки. К концу 2-го класса возраста происходит нивелирование ростовых процессов, связанное с изменением климатических характеристик места произрастания. Пинежский климатип сохраняет наследственно обусловленное отставание по радиальному и линейному росту от местной популяции одновозрастной сосны в пункте испытания соответственно на 13 и 8 %, тотемский климатип близок по диаметру к плесецкому, но опережает его по высоте на 10 %. Распределение диаметров ствола северотаежного потомства сосны значительно отличается от средне- и южно-таежного климатипов. Используя широтные коэффициенты роста, предложенные И.В. Волосевичем (1984 г.), для культур того же возраста рассчитаны соответствующие показатели в местах произрастания исходных насаждений, что позволило определить отклонения в показателях при имитации потепления или похолодания. Установлено, что при потеплении климата в бореальном поясе с повышением суммы температур воздуха более 10 ºС на каждые 100 ºС суммы эффективных температур можно ожидать увеличения показателей по росту и продуктивности сосны обыкновенной на 2...5 %. При похолодании климата (снижение суммы эффективных температур на каждые 100 ºС) изменение ростовых показателей (диаметр, высота, объем ствола) будет аналогично случаю повышения температуры – они уменьшаться на 2...5 %. Однако пониженная приживаемость южнотаежного потомства при выращивании в более суровых климатических условиях (снижение сохранности в первые годы после посадки) может привести к значительной потере продуктивности – до 15 % на каждые 100 ºС снижения суммы температур более 10 ºС. Сгладить эффект от реакции можно за счет повышения качества лесокультурного производства.

Сведения об авторах

Е.Н. Наквасина1, д-р с.-х. наук, проф.
Н.А. Прожерина2, канд. биол. наук, ст. науч. сотр. А.В. Чупров3, асп., ст. специалист
В.В. Беляев2, д-р с.-х. наук, проф.
1Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002;
е-mail: e.nakvasina@narfu.ru
2Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П. Лаверова РАН, наб. Северной Двины, д. 23, г. Архангельск, 163000, Россия;
е-mail: pronad1@yandex.ru, beljaew29@mail.ru
3Министерство природных ресурсов и ЛПК Архангельской области, ул. Выучейского, д. 18, г. Архангельск, 163000;
е-mail: alexchuprov@mail.ru

Ключевые слова

сосна обыкновенная, географические культуры, климатипы, рост, продуктивность, климатические изменения

Источник финансирования

Исследование частично выполнено при финансовой поддержке ФАНО России в рамках темы № 0409-2015-0141 «Структура и изменчивость популяций лесных сообществ на приарктических территориях севера Русской равнины в условиях изменяющегося климата».

Для цитирования

Наквасина Е.Н., Прожерина Н.А., Чупров А.В., Беляев В.В. Реакция роста сосны обыкновенной на климатические изменения в широтном градиенте // Лесн. журн. 2018. № 5. С. 82–93. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2018.5.82

Литература

1. Волосевич И.В. Закономерности широтной изменчивости роста древесной растительности в лесах Европейского Севера и их практическое использование // Лесоводственные исследования на зонально-типологической основе. Архангельск: АрхНИИЛиЛХ, 1984. С. 27–38.
2. Изучение имеющихся и создание новых географических культур: Программа и методика работ / под ред. Е.П. Проказина. Пушкино: ВНИИЛМ, 1972. 52 с.
3. Курнаев С.Ф. Лесорастительное районирование СССР. М.: Лесн. пром-сть, 1973. 240 с.
4. Лесотаксационный справочник по северо-востоку европейской части Российской Федерации: нормативные материалы для НАО, Архангельской, Вологодской областей и Республики Коми / сост.: Войнов Г.С. и др. Архангельск: Правда Севера, 2012. 672 с.
5. Наквасина Е.Н. Географические культуры сосны обыкновенной (Pinus sylvestris L.) как природная модель имитации климатических изменений // Вестн. Помор. ун-та. Сер.: Ест. науки. 2003. В. 2, т. 4. С. 48–53.
6. Наквасина Е.Н. Изменения в генеративной сфере сосны обыкновенной при имитации потепления климата // Изв. СПбЛТА. 2014. Вып. 209. С. 114–125.
7. Наквасина Е.Н., Юдина О.А., Покатило А.В. Ростовая и репродуктивная реакции Picea abies (L.) Karst. × P. Obovata (Ledeb.) при имитации потепления климата // Вестн. Сев. (Арктич.) федер. ун-та. Сер. Естеств. науки. 2016. № 1. С. 89–96.
8. Наквасина Е.Н., Юдина О.А., Прожерина Н.А., Камалова И.И., Минин Н.С. Географические культуры в ген-экологических исследованиях на Европейском Севере. Архангельск: АГТУ, 2008. 308 с.
9. Петров С.А. Генетические ресурсы лесообразующих видов, пути их создания и рационального использования // Лесоразведение и лесомелиорация: обзор. информ. М.: ЦБНТИлесхоз, 1987. Вып. 1. 30 с.
10. Райт Дж. Введение в лесную генетику / пер. с англ. А.Ф. Клячко, Л.Я. Полозовой, Л.П. Воеводкиной; под ред. Л.Ф. Правдина, В.А. Бударагина. М.: Лесн. пром-сть, 1973. 470 с.
11. Савва Ю.Е., Ваганов Е.А. Адаптация сосны обыкновенной к изменению климатических условий // Докл. АН РАН. 2002. Т. 385, № 1. С. 135–138.
12. Beaulieu J., Rainville A. Adaptation to Climate Change: Genetic Variation is Both a Short – and a Long-Term Solution // The Forestry Chronicle. 2005. Vol. 81, no. 5. Pp. 704–709.
13. Beuker E., Koski V. Adaptation of Tree Populations to Climate as Reflected by Ages Provenance Tests // Caring for the Forest: Research in a Changing World. Poster Abstracts. IUFRO ХХ World Congress, August 6–12, 1995. Тampere, Finland, 1995. P. 248.
14. Gömöry D., Longauer R., Hlásny T., Palacaj M., Strmeň S., Krajmerová D. Adaptation to Common Optimum in Different Populations of Norway Spruce (Picea abies Karst.) // European Journal of Forest Research. 2012. Vol. 131, iss. 2. Pp. 401–411.
15. Kapeller S., Lexer M. J., Geburek T., Hiebl J., Schueler S. Intraspecific Variation in Climate Response of Norway Spruce in the Eastern Alpine Range: Selecting Appropriate Provenances for Future Climate // Forest Ecology and Management. 2012. Vol. 271. Pp. 46–57.
16. Mátyás Cs. Modeling Effects of Climate Change with Provenance Test Data by Applying Ecological Distances // Caring for the Forest: Research in a Changing World. Poster Abstracts. IUFRO ХХ World Congress, August 6–12, 1995. Tampere, Finland, 1995. P. 250.
17. Oleksyn J., Tjoelker M.G., Reich P.B. Adaptation to Changing Environment in Scots Pine Populations across a Latitudinal Gradient // Silva Fennica. 1998. Vol. 32, iss. 2. Pp. 129–140.
18. Persson B. Will Climate Change Affect the Optimal Choice of Pinus sylvestris Provenances? // Silva Fennica. 1998. Vol. 32, iss. 2. Pp. 121–128.
19. Savolainen O., Bokma F., Garcia-Gil R. Genetic Variation in Cessation of Growth and Frost Hardiness and Consequences for Adaptation of Pinus sylvestris to Climatic Changes // Forest Ecology and Management. 2004. Vol. 197, iss. 1–3. Pp. 79–89.
20. Rehfeldt G.E., Tcebakova N.M., Milyutin L.I., Parfenova E.I., Wykoff W.R., Kouzmina N.A. Assessing Population Responses to Climate in Pinus sylvestris and Larix spp. of Eurasia with Climate-Transfer Models // Eurasian Journal of Forest Research. 2003. Vol. 6, iss. 2. Pp. 83–98.
21. Schultze U. Klimaänderung − neue Kriterien für Herkunftsempfehlungen. Beiträge zum Symp. “Klimaänderung in Österreich – Herausforderung an Forstgenetik und Waldbau”. Wien, 9 Nov., 1994. FBVA–Berichte, 1994. Bd. 81. S. 37–47.
22. Suvanto S., Nöjd P., Henttonen H.M., Beuker E., Mäkinen H. Geographical Patterns in the Radial Growth Response of Norway Spruce Provenances to Climatic Variation // Agricultural and Forest Meteorology. 2016. Vol. 222. Pp. 10–20.
23. Taeger S., Zang C., Liesebach M., Schneck V., Menzel A. Impact of Climate and Drought Events on the Growth of Scots Pine (Pinus sylvestris L.) Provenances // Forest Ecology and Management. 2013. Vol. 307. Pp. 30–42.

Поступила 05.04.18

Ссылка на английскую версию:

Growth Response of Scots Pine to Climate Change in the Latitudinal Gradient

UDC 582.475:551.583
DOI: 10.17238/issn0536-1036.2018.5.82

Growth Response of Scots Pine to Climate Change in the Latitudinal Gradient

E.N. Nakvasina1, Doctor of Agricultural Sciences, Professor
N.А. Prozherina2, Candidate of Biological Sciences, Senior Researcher
A.V. Chuprov3, Postgraduate Student, Senior Specialist V.V. Belyaev2, Doctor of Agricultural Sciences, Professor
1Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation;
е-mail: e.nakvasina@narfu.ru
2Federal Center for Integrated Arctic Research named after N.P. Laverov, Russian Academy of Sciences, Naberezhnaya Severnoy Dviny, 23, Arkhangelsk, 163002, Russian Federation;
e-mail: pronad1@yandex.ru, beljaew29@mail.ru
3Ministry of Natural Resources and Forestry of Arkhangelsk Region, ul. Vyucheyskogo, 18, Arkhangelsk, 163000, Russian Federation;
e-mail: alexchuprov@mail.ru

The species reaction to the different climate change scenarios is simulated on the example of Scots pine offspring growing on provenance trials of the middle taiga subzone (Arkhangelsk region). Climatypes with different in the latitudinal gradient by 2–3º N locations of the original stands were selected. Pinega climatype (Arkhangelsk region, the northern taiga subzone) growing in the middle taiga subzone simulates climate warming. Totma climatype (Vologda region, the southern taiga subzone) simulates cooling. Plesetsk climatype (Arkhangelsk region, the middle taiga subzone) local for the test point is a comparative standard for preservation of adaptive features in the constant climate. Safety, growth and productivity of crops were studied. Safety reduction of Totma climatype is evident during the first years after planting. Safety reduction and then plantation differentiation of Plesetsk and Pinega climatypes are extended and shifted. There is a growth processes leveling associated with changes in climatic characteristics of habitats by the end of the second age class. Pinega climatype maintains the inherited radial and linear stagnation from even-age pine local population at the test point by 13 % and 8 % respectively. Totma climatype is close to Plesetsk climatype in diameter, but outstrips it in height by 10 %. The trunk diameter distribution of the north taiga offspring of pine is significantly different from the middle and south taiga climatypes. The corresponding indicators of initial planting habitats are calculated using the latitudinal growth coefficients proposed by I.V. Volosevich (1984) for crops of the same age. This allowed defining the indicators deviations under warming or cooling simulation. It was found that we can expect an increase in growth and productivity of Scots pine by 2–5 % with climate warming in boreal zone with an increase of air temperatures above 10 °C for each 100 °C of the effective temperatures sum. Changing of the growth indicators (diameter, height, trunk volume) with climate cooling (reduction of effective temperatures sum for each 100 °C) will be similar to the increase in temperature. Indicators will decrease 2–5 %. However, the reduced survival index of the south taiga offspring grown in severer climatic conditions (reduced safety during the first years after planting) can lead to a significant loss of productivity up to 15 % for each 100 °C of reduction of temperatures sum above 10 °C. The effect of the reaction can be mitigated by improving the forestry production quality.

Keywords: Scots pine, provenance trials, climatypes, growth, productivity, climatic changes.

REFERENCES

1. Volosevich I.V. Zakonomernosti shirotnoy izmenchivosti rosta drevesnoy rastitel’nosti v lesakh Evropeyskogo Severa i ikh prakticheskoye ispol’zovani [Regularities of the Latitudinal Variability of Growth of Woody Vegetation in the Forests of the European North and Their Practical Use]. Lesovodstvennyye issledovaniya na zonal’notipologicheskoy osnove [Silvicultural Research on a Zonal and Typological Basis]. Arkhangelsk, ArkhNIIiKH Publ., 1984, pp. 27–38. (In Russ.)
2. Izucheniye imeyushchikhsya i sozdaniye novykh geograficheskikh kul’tur: Programma i metodika rabot [The Study of Existing and Creation of New Provenance Trials: a Program and a Working Procedure]. Ed. by E.P. Prokazin. Pushkino, VNIILM Publ., 1975. 52 p. (In Russ.)
3. Kurnayev S.F. Lesorastitel’noye rayonirovaniye SSSR [Forest Vegetation Zoning of the USSR]. Moscow, Lesnaya promyshlennost’ Publ., 1973. 240 p. (In Russ.)
4. Lesotaksatsionnyy spravochnik po severo-vostoku evropeyskoy chasti Rossiyskoy Federatsii: normativnyye materialy dlya NAO, Arkhangel’skoy, Vologodskoy oblastey i Respubliki Komi [Forest Mensuration Reference Book of the Northeast of the European Part of the Russian Federation: Specifications and Guidelines for Nenets Autonomous Okrug, Arkhangelsk and Vologda regions and the Komi Republic]. Ed. by G.S. Voynov, Arkhangelsk, Pravda Severa Publ., 2012. 672 p. (In Russ.)
5. Nakvasina E.N. Geograficheskiye kul’tury sosny obyknovennoy (Pinussylvestris L.) kak prirodnaya model’ imitatsii klimaticheskikh izmeneniy [Provenance Trials of Scots Pine (Pinus sylvestris L.) as a Natural Model of Simulation of Climate Change]. Vestnik Pomorskogo universiteta. Ser.: Estestvennye nauki, 2003, iss. 2, vol. 4, pp. 48–53.
6. Nakvasina E.N. Izmeneniya v generativnoy sfere sosny obyknovennoy pri imitatsii potepleniya klimata [Changes in the Generative Sphere of Scots Pine under Simulation of Climate Warming]. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii [News of the Saint Petersburg State Forest Technical Academy], 2014, no. 209, pp. 114–125.
7. Nakvasina E.N., Yudina O.A., Pokatilo A.V. Rostovaya i reproduktivnaya reaktsii Picea abies (L.) Karst. × P. obovata (Ledeb.) pri imitatsii potepleniya klimata [Growth and Reproductive Reactions of Picea abies (L.) Karst. × P. obovata (Ledeb.) under Simulation of Climate Warming]. Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser.: Estestvennye nauki, 2016, no. 1, pp. 89–96.
8. Nakvasina E.N., Yudina O.A., Prozherina N.A., Kamalova I.I., Minin N.S. Geograficheskiye kul’tury v gen-ekologicheskikh issledovaniyakh na Evropeyskom Severe [Provenance Trials in Geno-Ecological Researches in the European North]. Arkhangelsk, ASTU Publ., 2008. 308 p. (In Russ.)
9. Petrov S.A. Geneticheskiye resursy lesoobrazuyushchikh vidov, puti ikh sozdaniya i ratsional’nogo ispol’zovaniya [Genetic Resources of Forest Forming Types, Paths of Their Creation and Rational Use]. Lesorazvedeniye i lesomelioratsiya: obzor. inform. [Afforestation and Forest Melioration: Precis Articles], 1987, no. 1, 30 p.
10. Wright J. Vvedeniye v lesnuyu genetiku [Introduction to Forest Genetics]. Translated from English by A.F. Klyachko, L.YA. Polozovoy, L.P. Voyevodkinoy. Ed. by L.F. Pravdina, V.A. Budaragina, Moscow, Lesnaya promyshlennost’ Publ., 1973. 470 p. (In Russ.)
11. Savva Yu.E., Vaganov E.A. Adaptatsiya sosny obyknovennoy k izmeneniyu klimaticheskikh usloviy [Adaptation of Scots Pine to Climate Change]. Doklady Akademii nauk [Proceedings of the USSR Academy of Sciences], 2002, vol. 385, no. 1, pp. 135–138.
12. Beaulieu J., Rainville A. Adaptation to Climate Change: Genetic Variation is Both a Short- and a Long-Term Solution. The Forestry Chronicle, 2005, vol. 81, no. 5, pp. 704–709.
13. Beuker E., Koski V. Adaptation of Tree Populations to Climate as Reflected by Ages Provenance Tests. Caring for the Forest: Research in a Changing World. Poster Abstracts. IUFRO ХХ World Congress, August 6–12, 1995. Тampere, Finland, 1995, p. 248.
14. Gömöry D., Longauer R., Hlásny T., Palacaj M., Strmeň S., Krajmerová D. Adaptation to Common Optimum in Different Populations of Norway Spruce (Picea abies Karst.). European Journal of Forest Research, 2012, vol. 131, iss. 2, pp. 401–411.
15. Kapeller S., Lexer M. J., Geburek T., Hiebl J., Schueler S. Intraspecific Variation in Climate Response of Norway Spruce in the Eastern Alpine Range: Selecting Appropriate Provenances for Future Climate. Forest Ecology and Management, 2012, vol. 271, pp. 46–57.
16. Mátyás Cs. Modeling Effects of Climate Change with Provenance Test Data by Applying Ecological Distances. Caring for the Forest: Research in a Changing World. Poster Abstracts. IUFRO ХХ World Congress, August 6–12, 1995. Tampere, Finland, 1995, p. 250.
17. Oleksyn J., Tjoelker M.G., Reich P.B. Adaptation to Changing Environment in Scots Pine Populations across a Latitudinal Gradient. Silva Fennica, vol. 32, iss. 2, 1998, pp. 129–140.
18. Persson B. Will Climate Change Affect the Optimal Choice of Pinus sylvestris Provenances? Silva Fennica, 1998, vol. 32, iss. 2, pp. 121–128.
19. Savolainen O., Bokma F., Garcia-Gil R. Genetic Variation in Cessation of Growth and Frost Hardiness and Consequences for Adaptation of Pinus sylvestris to Climatic Changes. Forest Ecology and Management, 2004, vol. 197, iss. 1-3, pp. 79–89.
20. Rehfeldt G.E., Tcebakova N.M., Milyutin L.I., Parfenova E.I., Wykoff W.R., Kouzmina N.A. Assessing Population Responses to Climate in Pinus sylvestris and Larix spp. of Eurasia with Climate-Transfer Models. Eurasian Journal of Forest Research, vol. 6, iss. 2, 2003, pp. 83–98.
21. Schultze U. Klimaänderung − neue Kriterien für Herkunftsempfehlungen. Beiträge zum Symp. “Klimaänderung in Österreich – Herausforderung an Forstgenetik und Waldbau”. Wien, 9 Nov., 1994. FBVA – Berichte, 1994, Bd. 81, S. 37–47.
22. Suvanto S., Nöjd P., Henttonen H.M., Beuker E., Mäkinen H. Geographical Patterns in the Radial Growth Response of Norway Spruce Provenances to Climatic Variation. Agricultural and Forest Meteorology, 2016, vol. 222, pp. 10–20.
23. Taeger S., Zang C., Liesebach M., Schneck V., Menzel A. Impact of Climate and Drought Events on the Growth of Scots Pine (Pinus sylvestris L.) Provenances. Forest Ecology and Management, 2013, vol. 307, pp. 30–42.

Received on April 05, 2018


For citation: Nakvasina E.N., Prozherina N.А., Chuprov A.V., Belyaev V.V. Growth Response of Scots Pine to Climate Change in the Latitudinal Gradient. Lesnoy Zhurnal [Forestry Journal], 2018, no. 5, pp. 82–93. DOI: 10.17238/issn0536-1036.2018.5.82