Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002, ауд. 1425

Тел.: 8(8182) 21-61-18
Сайт: http://lesnoizhurnal.ru/ 
e-mail: forest@narfu.ru

RussianEnglish



архив

Парогазовая активация древесного угля из бамбука

Версия для печати

К.Н. Чу, А.А. Спицын, К.А. Романенко, Д.А. Пономарев

Рубрика: Химическая переработка древесины

Скачать статью (pdf, 0.8MB )

УДК

662.71+630*867.5

DOI:

10.17238/issn0536-1036.2018.4.140

Аннотация

Исследован пиролиз стеблей бамбука (Bambos bambusa) в целях установления сохранения им исходной структуры в получаемом угле-сырце. Кусочки бамбука подвергались медленному пиролизу по периодической схеме в 4-литровом реакторе из нержавеющей стали, снабженном внешним электрическим нагревателем. Активация угля-сырца проводилась перегретым водяным паром при температуре 970 °C. Для полученного монолитного наноструктурного углеродного материала определены адсорбционная активность по иоду, удельная площадь поверхности, объем пор и их распределение по размеру. Анализ изотерм сорбции-десорбции для полученного материала и диаграмм распределения пор по размерам показал, что этот материал имеет микропористую структуру. Объем микропор, установленный различными методами, составляет 0,26...0,29 см3/г и практически не зависит от метода определения. Микропоры вносят основной вклад в пористую структуру угля, занимая 85 % общего объема.

Сведения об авторах

К.Н. Чу1, асп.
А.А. Спицын1, канд. техн. наук, доц.
К.А. Романенко2, асп.
Д.А. Пономарев1, д-р хим. наук, проф.
1Санкт-Петербургский государственный лесотехнический университет им. С.М. Кирова, Институтский пер., д. 5, литер У, Санкт-Петербург, Россия, 194021; e-mail: congnghich19a@gmail.com, spitsyn.andrey@gmail.com, dponomarev1@mail.ru
2Северный (Арктический) федеральный университет им. М.В. Ломоносова, наб. Северной Двины, д. 17, г. Архангельск, Россия, 163002; e-mail: kristinaromanenko@yandex.ru

Ключевые слова

бамбук, парогазовая активация, активированный уголь, монолитный углерод, пиролиз

Для цитирования

Чу К.Н., Спицын А.А., Романенко К.А., Пономарев Д.А. Парогазовая активация древесного угля из бамбука // Лесн. журн. 2018. № 4. С. 140–149. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2018.4.140

Литература

1. Джайлс Ч., Инграм Б., Клюни Дж., Ликлема Я., Лейн Дж., Парфит Г., Рендалл Г., Рочестер К., Флир Г., Хесселинк Ф., Хоу Д. Адсорбция из растворов на поверхностях твердых тел / под ред. Г. Парфита, К. Рочестера. М.: Мир, 1986. 488 с.
2. Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. М.: Экология, 1991. 320 с.
3. Ademiluyi F.T., Braide O. Effectiveness of Nigerian Bamboo Activated with Different Activating Agents on the Adsorption of BTX // Journal of Applied Sciences and Environmental Management. 2012. Vol. 16, no. 3. Pp. 267‒273.
4. Asada T., Ohkubo T., Kawata K., Oikawa K. Ammonia Adsorption on Bamboo Charcoal with Acid Treatment // Journal of Health Science. 2006. Vol. 52, no. 5. Pp. 585‒589.
5. Chen D., Liu D., Zhang H., Chen Y., Li Q. Bamboo Pyrolysis Using TG-FTIR and a Lab-Scale Reactor: Analysis of Pyrolysis Behavior, Product Properties, and Carbon and Energy Yields // Fuel. 2015. Vol. 148. Pp. 79‒86.
6. Chen D., Zhou J., Zhang Q. Effects of Heating Rate on Slow Pyrolysis Behavior, Kinetic Parameters and Products Properties of Moso Bamboo // Bioresource Technology. 2014. Vol. 169. Pp. 313‒319.
7. González P.G., Pliego-Cuervo Y.B. Physicochemical and Microtextural Characterization of Activated Carbons Produced from Water Steam Activation of Three Bamboo Species // Journal of Analytical and Applied Pyrolysis. 2013. Vol. 99. Pp. 32‒39.
8. Gu X., Wang Y., Lai Ch., Qiu J., Li Sh., Hou Y., Martens W., Mahmood N., Zhang Sh. Microporous Bamboo Biochar for Lithium-Sulfur Batteries // Nano Research. 2015. Vol. 8, no. 1. Pp. 129‒139.
9. Hamzah F., Sarif M., Zulkifli F.N.Z., Ismail N.H., Manaf Sh.F.A., Idris A., Ibrahim W.A., Krishnan J. Microwave-Alkali Activation on the Morphology and Structure of Bamboo Activated Carbon // Applied Mechanics; Materials. 2014. Vol. 575. Pp. 154‒159.
10. Hirunpraditkoon S., Tunthong N., Ruangchai A., Nuithitikul K. Adsorption Ca-pacities of Activated Carbons Prepared from Bamboo by KOH Activation // World Acade-my of Science, Engineering and Technology. 2011. Vol. 78. Pp. 711‒715.
11. Kantarelis E., Liu J., Yang W., Blasiak W. Sustainable Valorization of Bamboo via High-Temperature Steam Pyrolysis for Energy Production and Added Value Materials // Energy; Fuels. 2010. Vol. 24, no. 11. Pp. 6142–6150.
12. Ma X., Yang H., Yu L., Chen Y., Li Y. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation // Materials. 2014. Vol. 7, no. 6. Pp. 4431‒4441.
13. Sing K.S.W. Reporting Physisorption Data for Gas / Solid Systems with Special Reference to the Determination of the Surface Area and Porosity (Recommendations 1984) // Pure and Applied Chemistry. 1985. Vol. 57, no. 4. Pp. 603‒619.
14. Tan Z., Qiu J., Zeng H., Liu H., Xiang J. Removal of Elemental Mercury by Bamboo Charcoal Impregnated with H2O2 // Fuel. 2011. Vol. 90, no. 4. Pp. 1471‒1475.
15. Wang S.-Y., Tsai M.-H., Lo Sh.-F., Tsai M.-J. Effects of Manufacturing Conditions on the Adsorption Capacity of Heavy Metal Ions by Makino Bamboo Charcoal // Bio-resource Technology. 2008. Vol. 99, iss. 15. Pp. 7027‒7033.
16. Wu F.-Ch., Tseng R.-L., Juang R.-Sh. Preparation of Activated Carbons from Bamboo and Their Adsorption Abilities for Dyes and Phenol // Journal of Environmental Science & Health. Part A. 1999. Vol. 34, no. 9. Pp. 1753–1775.
17. Zhang Y.-J., Xing Z.-J., Duan Z.-K. Effects of Steam Activation on the Pore Structure and Surface Chemistry of Activated Carbon Derived from Bamboo Waste // Ap-plied Surface Science. 2014. Vol. 315. Pp. 279‒286.
18. Zhao W., Luo L., Wang H., Fan M. Synthesis of Bamboo-Based Activated Car-bons with Super-High Specific Surface Area for Hydrogen Storage // BioResources. 2017. Vol. 12, iss. 1. Pp. 1246–1262.

Поступила 14.02.18

Ссылка на английскую версию:

Steam Charcoal Activation from Bamboo

UDC 662.71+630*867.5
DOI: 10.17238/issn0536-1036.2018.4.140

Steam Charcoal Activation from Bamboo

Chu Cong Nghi1, Postgraduate Student
A. А. Spitsyn1, Candidate of Engineering Sciences, Associate Professor
K. А. Romanenko2, Postgraduate Student
D. A. Ponomarev1, Doctor of Chemical Sciences, Professor
1Saint Petersburg State Forest Technical University under name of S.M. Kirov, Institutskiy per., 5, У, Saint Petersburg, 194021, Russian Federation; e-mail: congnghich19a@gmail.com, spitsyn.andrey@gmail.com, dponomarev1@mail.ru
2Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation; e-mail: kristinaromanenko@yandex.ru

The paper studies the pyrolysis of bamboo stems (Bambos bambusa) to preserve the original structure in the resulting lump charcoal. Bamboo pieces are subjected to slow pyrolysis in a 4-liter stainless steel reactor equipped with an external electric heater according to the periodic scheme. Activation of lump charcoal is carried out by superheated steam at a tempera-ture of 970 °C. The authors determine the adsorption activity for iodine, specific surface area, volume and pore size distribution for the obtained monolithic nanostructured carbon material. Analysis of sorption-desorption isotherms for the resulting material and pore size distribution diagrams indicate a microporous structure of the resulting material. The volume of micropores established by four different methods, is 0.26…0.29 cm3/g and is practically independent on the method of determination. Micropores make the main contribution to the porous structure of charcoal; their volume comprises the major part (85 %) of the total volume.

Keywords: bamboo, steam activation, active carbon, monolithic carbon, pyrolysis.

REFERENCES
1. Giles C., Ingram B., Clunie J., Lykema J., Lane J., Parfitt G., Rendall H., Roches-ter C.H., Fleer G., Hesselink F., Hough D. Adsorption From Solution at the Solid / Liquid Interface. Ed. by G.D. Parfitt, C.H. Rochester. London, Academic Press, 1983. 416 p.
2. Obolenskaya A.V., El'nitskaya Z.P., Leonovich A.A. Laboratornye raboty po khimii drevesiny i tsellyulozy [Laboratory Work on the Chemistry of Wood and Cellulose]. Moscow, Ekologiya Publ., 1991. 320 p. (In Russ.)
3. Ademiluyi F.T., Braide O. Effectiveness of Nigerian Bamboo Activated with Different Activating Agents on the Adsorption of BTX. Journal of Applied Sciences and Envi-ronmental Management, 2012, vol. 16, no. 3. pp. 267‒273.
4. Asada T., Ohkubo T., Kawata K., Oikawa K. Ammonia Adsorption on Bamboo Charcoal with Acid Treatment. Journal of Health Science, 2006, vol. 52, no. 5, pp. 585‒589.
5. Chen D., Liu D., Zhang H., Chen Y., Li Q. Bamboo Pyrolysis Using TG-FTIR and a Lab-Scale Reactor: Analysis of Pyrolysis Behavior, Product Properties, and Carbon and Energy Yields. Fuel, 2015, vol. 148, pp. 79‒86.
6. Chen D., Zhou J., Zhang Q. Effects of Heating Rate on Slow Pyrolysis Behavior, Kinetic Parameters and Products Properties of Moso Bamboo. Bioresource Technology, 2014, vol. 169, pp. 313‒319.
7. González P.G., Pliego-Cuervo Y.B. Physicochemical and Microtextural Characterization of Activated Carbons Produced from Water Steam Activation of Three Bamboo Species. Journal of Analytical and Applied Pyrolysis, 2013, vol. 99, pp. 32‒39.
8. Gu X., Wang Y., Lai Ch., Qiu J., Li Sh., Hou Y., Martens W., Mahmood N., Zhang Sh. Microporous Bamboo Biochar for Lithium-Sulfur Batteries. Nano Research, 2015, vol. 8,no. 1, pp. 129‒139.
9. Hamzah F., Sarif M., Zulkifli F.N.Z., Ismail N.H., Manaf Sh.F.A., Idris A., Ibrahim W.A., Krishnan J. Microwave-Alkali Activation on the Morphology and Structure of Bamboo Activated Carbon. Applied Mechanics & Materials, 2014, vol. 575, pp. 154‒159.
10. Hirunpraditkoon S., Tunthong N., Ruangchai A., Nuithitikul K. Adsorption Capacities of Activated Carbons Prepared from Bamboo by KOH Activation. World Academy of Science, Engineering and Technology, 2011, vol. 78, pp. 711‒715.
11. Kantarelis E., Liu J., Yang W., Blasiak W. Sustainable Valorization of Bamboo via High-Temperature Steam Pyrolysis for Energy Production and Added Value Materials. Energy & Fuels, 2010, vol. 24, no. 11, pp. 6142–6150.
12. Ma X., Yang H., Yu L., Chen Y., Li Y. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation. Materials, 2014, vol. 7, no. 6, pp. 4431‒4441.
13. Sing K.S.W. Reporting Physisorption Data for Gas / Solid Systems with Special Reference to the Determination of the Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, vol. 57, no. 4, pp. 603‒619.
14. Tan Z., Qiu J., Zeng H., Liu H., Xiang J. Removal of Elemental Mercury by Bamboo Charcoal Impregnated with H2O2. Fuel, 2011, vol. 90, no. 4, pp. 1471‒1475.
15. Wang S.-Y., Tsai M.-H., Lo Sh.-F., Tsai M.-J. Effects of Manufacturing Conditions on the Adsorption Capacity of Heavy Metal Ions by Makino Bamboo Charcoal. Bioresource Technology, 2008, vol. 99, no. 15, pp. 7027‒7033.
16. Wu F.-Ch., Tseng R.-L., Juang R.-Sh. Preparation of Activated Carbons from Bamboo and Their Adsorption Abilities for Dyes and Phenol. Journal of Environmental Science & Health, Part A, 1999, vol. 34, no. 9, pp. 1753–1775.
17. Zhang Y.-J., Xing Z.-J., Duan Z.-K. Effects of Steam Activation on the Pore Structure and Surface Chemistry of Activated Carbon Derived from Bamboo Waste. Applied Surface Science, 2014, vol. 315, pp. 279‒286.
18. Zhao W., Luo L., Wang H., Fan M. Synthesis of Bamboo-Based Activated Carbons with Super-High Specific Surface Area for Hydrogen Storage. BioResources, 2017, vol. 12, no. 1, pp. 1246–1262.

Received on February 14, 2018


For citation: Chu Cong Nghi, Spitsyn A.А., Romanenko K.А., Ponomarev D.A. Steam Charcoal Activation from Bamboo. Lesnoy zhurnal [Forestry journal], 2018, no. 4, pp. 140–149. DOI: 10.17238/issn0536-1036.2018.4.140