Осторожно мошенники! Официально заявляем, никакие денежные средства с авторов и членов редколлегии НЕ ВЗЫМАЮТСЯ! Большая просьба игнорировать «спам-письма».

Почтовый адрес: САФУ, Редакция «Лесной журнал», наб. Северной Двины, 17, г. Архангельск, Россия, 163002

Местонахождение: Редакция «Лесной журнал», наб. Северной Двины, 17, ауд. 1425, г. Архангельск

Тел/факс: (818-2) 21-61-18
Сайт: http://lesnoizhurnal.ru/
e-mail: forest@narfu.ru


архив

Влияние несплошной рубки на тонкие корни и микоризные окончания ели обыкновенной

Версия для печати

А.Ю. Карпечко

Рубрика: Лесное хозяйство

Скачать статью (pdf, 0.7MB )

УДК

630*221.04:630*164.3:631.466.12

DOI:

10.17238/issn0536-1036.2018.2.23

Аннотация

Перемещение лесохозяйственных машин под пологом леса неизбежно влечет негативные последствия, которые затрагивают в первую очередь корневые системы деревьев. В то же время при разреживании древостоя происходит снижение конкуренции между оставшимися деревьями (как для их надземной, так и подземной части), изменяется влажность почвы, улучшается световой режим. Известно, что все лесообразующие породы имеют эктомикоризы. В таежной зоне, где преобладают относительно бедные почвы с замедленным процессом минерализации органических веществ, микоризы особенно полезны, так как благодаря им корни растений получают больше элементов питания из минеральных и органических соединений. Цель работы – исследование реакции корней и микоризных окончаний, оставшихся после рубки (механизированного разреживания) деревьев, на изменившиеся условия произрастания. Изучались корневые системы елового элемента древостоя на пробных площадях в Республике Карелия (среднетаежная подзона). Оценивалось их состояние через 5 и 14 лет после рубки. Использовался метод монолитов, отбираемых в технологических коридорах и пасеках по всей площади участка. Были выделены простая и па-поротниковидная формы микориз ели. Установлено, что в технологическом коридоре масса корней после рубки уменьшается и на ее восстановление в данных условиях требуется не менее 14 лет. Формирование микоризных окончаний происходит достаточно быстро. Через 5 лет после проведения рубки плотность микоризных окончаний на корнях, сохранившихся в технологических коридорах, составляет как минимум 54 % от фоновых значений на пасеках. В отдельных случаях наблюдается активное восстановление количества микоризных окончаний, и плотность их размещения в коридоре становится больше, чем в пасеке. Снижение корневой конкуренции, увеличенный световой поток, достигающий поверхности почвы в зоне технологического коридора, являются положительными факторами в процессе развития тонких корней и микоризных окончаний. Результаты работы могут быть использованы для оценки экологических последствий несплошных рубок, которые активно применяют для удовлетворения потребностей в древесине.

Сведения об авторах

А.Ю. Карпечко, канд. с.-х. наук, науч. сотр.
Институт леса Карельского научного центра Российской академии наук, ул. Пушкинская, д. 11, г. Петрозаводск, Республика Карелия, Россия, 185910; e-mail: yuvkarp@onego.ru

Ключевые слова

корни, микоризные окончания, несплошная рубка, технологический коридор, пасека

Источник финансирования

Финансовое обеспечение исследований осуществлялось из средств федерельного бюджета на выполнение государственного задания Института леса КарНЦ РАН (0220-2017-0001)

Для цитирования

Карпечко А.Ю. Влияние несплошной рубки на тонкие корни и ми-коризные окончания ели обыкновенной // Лесн. журн. 2018. № 2. С. 23–32. (Изв. высш. учеб. заведений). DOI: 10.17238/issn0536-1036.2018.2.23

Литература

1. Зарубина Л.В., Коновалов В.Н., Феклистов П.А., Клевцов Д.Н., Копытков В.В. Оценка состояния хвойных деревьев на вырубках в условиях Европейского Севера // Вестн. САФУ. Сер. «Естественные науки». 2015. № 1. С. 85–94.
2. Калинин М.И. Формирование корневой системы деревьев. М.: Лесн. пром-сть, 1983. 152 с.
3. Карпечко А.Ю. Изменение плотности и корненасыщенности почв под влия-нием лесозаготовительной техники в еловых лесах южной Карелии // Лесоведение. 2008. № 5. С. 66–70.
4. Орлов А.Я. Метод определения массы корней деревьев в лесу и возможность учета годичного прироста органической массы в толще лесной почвы // Лесоведение. 1967. № 1. С. 64–70.
5. Рахтеенко И.Н. Рост и взаимодействие корневых систем древесных расте-ний. Минск: АН БССР, 1963. 254 с.
6. Семенова Л.А. Морфология микориз сосны обыкновенной в спелых лесах // Микоризные грибы и микоризы лесообразующих пород Севера. Петрозаводск: Карел. фил. АН СССР, 1980. С. 103–132.
7. Сюнёв В.С., Соколов А.П., Коновалов А.П., Катаров В.К., Селиверстов А.А., Герасимов Ю.Ю., Карвинен С., Вяльккю Э. Сравнение технологий лесосечных работ в лесозаготовительных компаниях Республики Карелия. Йоэнсуу: НИИ леса Финляндии METLA, 2008. 126 с.
8. Шубин В.И. Микотрофность древесных пород, ее значение при разведении леса в таежной зоне. Л.: Наука. Ленингр. отд-ние, 1973. 264 с.
9. Шубин В.И. Пути использования микотрофии древесных пород в лесном хозяйстве таежной зоны. Петрозаводск: Карел. фил. АН СССР, 1983. 40 с.
10. Bowen G.D. The Ecology of Ectomycorrhiza Formation and Functioning // Plant and Soil. 1994. Vol. 159, iss. 1. Pp. 61–67.
11. Jonsson Y. Mekaniserade metoder I gallringen // Skogs-O. Landlr.-Skad. Tidskrift. 1976. 113 p.
12. Kardell L. Traktorskador och tillväxtförluster hos gran – analys av ett 10-årigt försök // Sveriges skogsvårdsförbunds tidskrift. 1978. No. 3. Pp. 305–322.
13. Murphy G. Soil Damage Associated with Production Thinning // New Zealand Journal of Forestry Science. 1982. Vol. 12, iss. 2. Pp. 281–292.
14. Nadezhdina N., Čermak J., Neruda J., Prax A., Ulrich R., Nadezhdin V., Gasparek J., Pokorny E. Roots under the load of heavy machinery in spruce trees // European Journal of Forest Research. 2006. Vol. 125, iss. 2. Pp. 111–128.
15. Wallander H., Nilsson L.O., Hagerberg D., Bååth E. Estimation of the Biomass and Seasonal Growth of External Mycelium of Ectomycorrhizal Fungi in the Field // New Phytologist. 2001. Vol. 151, iss. 3. Pp. 753–760.
16. Wallander H., Wickman T., Jacks G. Apatite as P Source in Mycorrhizal and Non-mycorrhizal Pinus sylvestris Seedlings // Plant and Soil. 1997. Vol. 196, iss. 1. Pp. 123–131.

Поступила 15.12.17

Ссылка на английскую версию:

The Effect of Partial Cutting on Tender Roots and Mycorrhiza of Norway Spruce

UDC 630*221.04:630*164.3:631.466.12

DOI: 10.17238/issn0536-1036.2018.2.23

The Effect of Partial Cutting on Tender Roots and Mycorrhiza of Norway Spruce

A.Yu. Karpechko, Candidate of Agricultural Sciences, Research Officer
Forestry Research Institute of Karelian Research Centre of the Russian Academy of Sciences, ul. Pushkinskaya, 11, Petrozavodsk, 185910, Russian Federation; e-mail: yuvkarp@onego.ru

Tree root systems often are affected by the forestry machinery movement under the forest canopy. At the same time, thinning has a positive effect in decreasing competition between remaining trees (both for their aboveground and underground parts); the soil moisture changes and the light regime improves. All forest-forming species have ectomycorrhizae. Mycorrhizas are especially useful in the taiga zone where relatively poor soils with the slow mineralization process of organic substances predominate, since plant roots receive more nutrition elements from mineral and organic compounds. The goal of research is to study the reaction of roots and mycorrhizas left after felling (mechanized thinning) to the changed conditions of growth. The root systems of the spruce element of the stand were studied in permanent sample plots in the Republic of Karelia (middle taiga subzone). Their condition was estimated in 5 and 14 years after cutting. We used the method of monoliths selected in technological corridors and swaths throughout the area of the site. Simple and ferny forms of spruce mycorrhiza were observed. The root mass was reduced significantly after felling in the technological corridor and could be restored in at least 14 years. Mycorrhiza formation occurred quickly enough. 5 years after felling, the mycorrhiza density on the roots preserved in the technological corridors reached at least 54 % of the background values in the swaths. In some cases, we observed an active restoration of mycorrhiza; their density in the technological corridor was higher than in the swath. Reduction of root competition, increased luminous flux reaching the soil surface in the zone of the technological corridor, are positive factors in the development of tender roots and mycorrhiza. The results of the study can be used to assess the environmental consequences of partial cutting, which is a remarkable wood sourcing.
Keywords: root, mycorrhiza, partial cutting, technological corridor, swath.

REFERENCES

1. Zarubina L.V., Konovalov V.N., Feklistov P.A., Klevtsov D.N., Kopytkov V.V. Otsenka sostoyaniya khvoynykh derev'ev na vyrubkakh v usloviyakh Evropeyskogo Severa [Conifers Stand Condition Assessment in the Fellings in a Climate of the European North]. Vestnik Severnogo (Arkticheskogo) federal'nogo universiteta. Ser.: Estestvennye nauki, 2015, no. 1, pp. 85‒94.
2. Kalinin M.I. Formirovanie kornevoy sistemy derev'ev [Formation of the Tree Root System]. Moscow, Lesnaya promyshlennost' Publ., 1983. 152 p. (In Russ.)
3. Karpechko A.Yu. Izmenenie plotnosti i kornenasyshchennosti pochv pod vliyaniem lesozagotovitel'noy tekhniki v elovykh lesakh yuzhnoy Karelii [Changes in Density and Root Occupation of Soils under the Influence of Logging Machines in Spruce Forests of South Karelia]. Lesovedenie [Russian Journal of Forest Science], 2008, no. 5, pp. 66–70.
4. Orlov A.Ya. Metod opredeleniya massy korney derev'ev v lesu i vozmozhnost' ucheta godichnogo prirosta organicheskoy massy v tolshche lesnoy pochvy [Method for Determining the Mass of Tree Roots in the Forest and Accounting for the Annual Increase in the Organic Mass in the Forest Soil Depth]. Lesovedenie [Russian Journal of Forest Science], 1967, no. 1, pp. 64–70.
5. Rakhteenko I.N. Rost i vzaimodeystvie kornevykh sistem drevesnykh rasteniy [Growth and Interaction of Root Systems of Woody Plants]. Minsk, AS BSSR Publ., 1963. 254 p. (In Russ.)
6. Semenova L.A. Morfologiya mikoriz sosny obyknovennoy v spelykh lesakh [Mycorrhizal Morphology of Scots Pine in Mature Forests]. Mikoriznye griby i mikorizy lesoobrazuyushchikh porod Severa [Mycorrhizal Fungi and Mycorrhizas of Forest-Forming Species of the North]. Petrozavodsk, Karelian Branch AS USSR Publ., 1980, pp. 103–132. (In Russ.)
7. Syunev V.S., Sokolov A.P., Konovalov A.P., Katarov V.K., Seliverstov A.A., Gerasimov Yu.Yu., Karvinen S., Vyal’kkyu E. Sravnenie tekhnologiy lesosechnykh rabot v lesozagotovitel'nykh kompaniyah Respubliki Kareliya [The Comparison of Logging Technology in Lumber Companies in the Republic of Karelia]. NII lesa Finlyandii METLA [Finnish Forest Research Institute (Metla)], 2008. 126 p. (In Russ.)
8. Shubin V.I. Mikotrofnost' drevesnykh porod, ee znachenie pri razvedenii lesa v taezhnoy zone [Woody Plants Mycotrophy and Its Importance for the Forest Cultivation in the Taiga Zone]. Leningrad, Nauka Publ., 1973. 264 p. (In Russ.)
9. Shubin V.I. Puti ispol'zovaniya mikotrofii drevesnykh porod v lesnom khozyaystve taezhnoy zony [Ways to Use Woody Species Mycotrophy in the Taiga Forestry]. Petrozavodsk, Karelian Branch AS USSR Publ., 1983. 40 p. (In Russ.)
10. Bowen G.D. The Ecology of Ectomycorrhiza Formation and Functioning. Plant and Soil, 1994, vol. 159, iss. 1, pp. 61–67.
11. Jonsson Y. Mekaniserade metoder I gallringen. Skogs-O. Landlr.-Skad. Tidskrift, 1976. 113 p.
12. Kardell L. Traktorskador och tillväxtförluster hos gran – analys av ett 10-årigt försök. Sveriges skogsvårdsförbunds tidskrift, 1978, no. 3, pp. 305–322.
13. Murphy G. Soil Damage Associated with Production Thinning. New Zealand Journal of Forestry Science, 1982, vol. 12, iss. 2, pp. 281–292.
14. Nadezhdina N., Čermak J., Neruda J., Prax A., Ulrich R., Nadezhdin V., Gasparek J., Pokorny E. Roots under the Load of Heavy Machinery in Spruce Trees. European Journal of Forest Research, 2006, vol. 125, iss 2, pp. 111–128.
15. Wallander H., Nilsson L.O., Hagerberg D., Bååth E. Estimation of the Biomass and Seasonal Growth of External Mycelium of Ectomycorrhizal Fungi in the Field. New Phytologist, 2001, vol. 151, iss. 3, pp. 753–760.
16. Wallander H., Wickman T., Jacks G. Apatite as P Source in Mycorrhizal and Non-mycorrhizal Pinus sylvestris Seedlings. Plant and Soil, 1997, vol. 196, iss. 1, pp. 123–131.
Received on December 15, 2017

For citation: Karpechko A.Yu. The Effect of Partial Cutting on Tender Roots and Mycor-rhiza of Norway Spruce. Lesnoy zhurnal [Forestry journal], 2018, no. 2, pp. 23–32. DOI: 10.17238/issn0536-1036.2018.2.23